본문 바로가기

추천 검색어

실시간 인기 검색어

파이썬 머신러닝 완벽 가이드

다양한 캐글 예제와 함께 기초 알고리즘부터 최신 기법까지 배우는 | 2 판
위키북스 데이터 사이언스 시리즈 81
권철민 저자(글)
위키북스 · 2022년 04월 21일
가장 최근에 출시된 개정판입니다. 구판보기
9.9
10점 중 9.9점
(19개의 리뷰)
도움돼요 (29%의 구매자)
  • 파이썬 머신러닝 완벽 가이드 대표 이미지
    파이썬 머신러닝 완벽 가이드 대표 이미지
  • A4
    사이즈 비교
    210x297
    파이썬 머신러닝 완벽 가이드 사이즈 비교 187x239
    단위 : mm
01 / 02
MD의 선택 무료배송 이벤트 소득공제
10% 36,000 40,000
적립/혜택
2,000P

기본적립

5% 적립 2,000P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 2,000P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서 포함 15,000원 이상 구매 시 무료배송
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
새벽배송 내일(4/23,수 오전 7시 전) 도착
기본배송지 기준
배송일자 기준 안내
로그인 : 회원정보에 등록된 기본배송지
로그아웃 : '서울시 종로구 종로1' 주소 기준
로그인정확한 배송 안내를 받아보세요!

이달의 꽃과 함께 책을 받아보세요!

1권 구매 시 결제 단계에서 적용 가능합니다.

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

파이썬 머신러닝 완벽 가이드 상세 이미지
자세한 이론 설명과 파이썬 실습을 통해 머신러닝을 완벽하게 배울 수 있습니다!
《파이썬 머신러닝 완벽 가이드》는 이론 위주의 머신러닝 책에서 탈피해, 다양한 실전 예제를 직접 구현해 보면서 머신러닝을 체득할 수 있도록 만들었습니다. 캐글과 UCI 머신러닝 리포지토리에서 난이도가 있는 실습 데이터를 기반으로 실전 예제를 구성했고, XGBoost, LightGBM, 스태킹 기법 등 캐글의 많은 데이터 사이언스에서 애용하는 최신 알고리즘과 기법을 상세하게 설명했습니다.

이번 개정2판에서는 최신 사이킷런 버전(1.0.2)을 포함해 책에서 사용되는 모든 라이브러리를 최신 버전으로 업그레이드한 실습 코드를 구현하고, 다양한 유형의 하이퍼파라미터를 가지는 XGBoost나 LightGBM 모델의 최적 하이퍼파라미터 튜닝을 위한 베이지안 최적화 기법 적용 실습을 제공합니다. 또한 머신러닝 관련 데이터 분석에 널리 쓰이는 시각화 라이브러리인 matplotlib과 seaborn의 활용법을 다룬 장을 새롭게 추가했습니다.

이 책의 총서 (79)

작가정보

저자(글) 권철민

엔코아 컨설팅, 한국 오라클을 거쳐 현재는 AI 프리랜서 컨설턴트로 활약하고 있다. 지난 20년간 50여 개 이상의 주요 고객사에서 데이터컨설팅 분야에 매진해 왔으며, 최근 몇 년간은 AI 기반의 Advanced Analytics 분야에 집중하고 있다. 직접 구현해 보지 않으면 절대 이해하지 못하는 평범한 두뇌의 소유자이며, 절망적인 프로젝트에 참여해 자기학대적인 노력으로 문제를 해결하는 이상한 성격의 소유자이기도 하다.

목차

  • ▣ 1장: 파이썬 기반의 머신러닝과 생태계 이해
    01. 머신러닝의 개념
    ___머신러닝의 분류
    ___데이터 전쟁
    ___파이썬과 R 기반의 머신러닝 비교
    02. 파이썬 머신러닝 생태계를 구성하는 주요 패키지
    ___파이썬 머신러닝을 위한 S/W 설치
    03. 넘파이
    ___넘파이 ndarray 개요
    ___ndarray의 데이터 타입
    ___ndarray를 편리하게 생성하기 - arange, zeros, ones
    ___ndarray의 차원과 크기를 변경하는 reshape( )
    ___넘파이의 ndarray의 데이터 세트 선택하기 - 인덱싱(Indexing)
    ___행렬의 정렬 - sort( )와 argsort( )
    ___선형대수 연산 - 행렬 내적과 전치 행렬 구하기
    04. 데이터 핸들링 - 판다스
    ___판다스 시작 - 파일을 DataFrame으로 로딩, 기본 API
    ___DataFrame과 리스트, 딕셔너리, 넘파이 ndarray 상호 변환
    ___DataFrame의 칼럼 데이터 세트 생성과 수정
    ___DataFrame 데이터 삭제
    ___Index 객체
    ___데이터 셀렉션 및 필터링
    ___정렬, Aggregation 함수, GroupBy 적용
    ___결손 데이터 처리하기
    ___apply lambda 식으로 데이터 가공
    05. 정리

    ▣ 2장: 사이킷런으로 시작하는 머신러닝
    01. 사이킷런 소개와 특징
    02. 첫 번째 머신러닝 만들어 보기 - 붓꽃 품종 예측하기
    03. 사이킷런의 기반 프레임워크 익히기
    ___Estimator 이해 및 fit( ), predict( ) 메서드
    ___사이킷런의 주요 모듈
    ___내장된 예제 데이터 세트
    04. Model Selection 모듈 소개
    ___학습/테스트 데이터 세트 분리 - train_test_split()
    ___교차 검증
    ___GridSearchCV - 교차 검증과 최적 하이퍼 파라미터 튜닝을 한 번에 111
    05. 데이터 전처리
    ___데이터 인코딩
    ___피처 스케일링과 정규화
    ___StandardScaler
    ___MinMaxScaler
    ___학습 데이터와 테스트 데이터의 스케일링 변환 시 유의점
    06. 사이킷런으로 수행하는 타이타닉 생존자 예측
    07. 정리

    ▣ 3장: 평가
    01. 정확도(Accuracy)
    02. 오차 행렬
    03. 정밀도와 재현율
    ___정밀도/재현율 트레이드오프
    ___정밀도와 재현율의 맹점
    04. F1 스코어
    05. ROC 곡선과 AUC
    06. 피마 인디언 당뇨병 예측
    07. 정리

    ▣ 4장: 분류
    01. 분류(Classification)의 개요
    02. 결정 트리
    ___결정 트리 모델의 특징
    ___결정 트리 파라미터
    ___결정 트리 모델의 시각화
    ___결정 트리 과적합(Overfitting)
    ___결정 트리 실습 - 사용자 행동 인식 데이터 세트
    03. 앙상블 학습
    ___앙상블 학습 개요
    ___보팅 유형 - 하드 보팅(Hard Voting)과 소프트 보팅(Soft Voting)
    ___보팅 분류기(Voting Classifier)
    04. 랜덤 포레스트
    ___랜덤 포레스트의 개요 및 실습
    ___랜덤 포레스트 하이퍼 파라미터 및 튜닝
    ___GBM의 개요 및 실습
    05. GBM(Gradient Boosting Machine)
    ___GBM 하이퍼 파라미터 소개
    ___XGBoost 개요
    06. XGBoost(eXtra Gradient Boost)
    ___XGBoost 설치하기
    ___파이썬 래퍼 XGBoost 하이퍼 파라미터
    ___파이썬 래퍼 XGBoost 적용 - 위스콘신 유방암 예측
    ___사이킷런 래퍼 XGBoost의 개요 및 적용
    07. LightGBM
    ___LightGBM 설치
    ___LightGBM 하이퍼 파라미터
    ___하이퍼 파라미터 튜닝 방안
    ___파이썬 래퍼 LightGBM과 사이킷런 래퍼 XGBoost,
    ___LightGBM 하이퍼 파라미터 비교
    ___LightGBM 적용 - 위스콘신 유방암 예측
    08. 베이지안 최적화 기반의 HyperOpt를 이용한 하이퍼 파라미터 튜닝
    ___베이지안 최적화 개요
    ___HyperOpt 사용하기
    ___HyperOpt를 이용한 XGBoost 하이퍼 파라미터 최적화
    09. 분류 실습 - 캐글 산탄데르 고객 만족 예측
    ___데이터 전처리
    ___XGBoost 모델 학습과 하이퍼 파라미터 튜닝
    ___LightGBM 모델 학습과 하이퍼 파라미터 튜닝
    10. 분류 실습 - 캐글 신용카드 사기 검출
    ___언더 샘플링과 오버 샘플링의 이해
    ___데이터 일차 가공 및 모델 학습/예측/평가
    ___데이터 분포도 변환 후 모델 학습/예측/평가
    ___이상치 데이터 제거 후 모델 학습/예측/평가
    ___SMOTE 오버 샘플링 적용 후 모델 학습/예측/평가
    11. 스태킹 앙상블
    ___기본 스태킹 모델
    ___CV 세트 기반의 스태킹
    12. 정리

    ▣ 5장: 회귀
    01. 회귀 소개
    02. 단순 선형 회귀를 통한 회귀 이해
    03. 비용 최소화하기 - 경사 하강법(Gradient Descent) 소개
    04. 사이킷런 LinearRegression을 이용한 보스턴 주택 가격 예측
    ___LinearRegression 클래스 - Ordinary Least Squares
    ___회귀 평가 지표
    ___LinearRegression을 이용해 보스턴 주택 가격 회귀 구현
    05. 다항 회귀와 과(대)적합/과소적합 이해
    ___다항 회귀 이해
    ___다항 회귀를 이용한 과소적합 및 과적합 이해
    ___편향-분산 트레이드오프(Bias-Variance Trade off)
    06. 규제 선형 모델 - 릿지, 라쏘, 엘라스틱넷
    ___규제 선형 모델의 개요
    ___릿지 회귀
    ___라쏘 회귀
    ___엘라스틱넷 회귀
    ___선형 회귀 모델을 위한 데이터 변환
    07. 로지스틱 회귀
    08. 회귀 트리
    09. 회귀 실습 - 자전거 대여 수요 예측
    ___데이터 클렌징 및 가공과 데이터 시각화
    ___로그 변환, 피처 인코딩과 모델 학습/예측/평가
    10. 회귀 실습 - 캐글 주택 가격: 고급 회귀 기법
    ___데이터 사전 처리(Preprocessing)
    ___선형 회귀 모델 학습/예측/평가
    ___회귀 트리 모델 학습/예측/평가
    ___회귀 모델의 예측 결과 혼합을 통한 최종 예측
    ___스태킹 앙상블 모델을 통한 회귀 예측
    11. 정리

    ▣ 6장: 차원 축소
    01. 차원 축소(Dimension Reduction) 개요
    02. PCA(Principal Component Analysis)
    ___PCA 개요
    03. LDA(Linear Discriminant Analysis)
    ___LDA 개요
    04. SVD(Singular Value Decomposition)
    ___SVD 개요
    ___사이킷런 TruncatedSVD 클래스를 이용한 변환
    05. NMF(Non-Negative Matrix Factorization)
    ___NMF 개요
    06. 정리

    ▣ 7장: 군집화
    01. K-평균 알고리즘 이해
    ___사이킷런 KMeans 클래스 소개
    ___K-평균을 이용한 붓꽃 데이터 세트 군집화
    ___군집화 알고리즘 테스트를 위한 데이터 생성
    02. 군집 평가(Cluster Evaluation)
    ___실루엣 분석의 개요
    ___붓꽃 데이터 세트를 이용한 군집 평가
    ___군집별 평균 실루엣 계수의 시각화를 통한 군집 개수 최적화 방법
    03. 평균 이동
    ___평균 이동(Mean Shift)의 개요
    04. GMM(Gaussian Mixture Model)
    ___GMM(Gaussian Mixture Model) 소개
    ___GMM을 이용한 붓꽃 데이터 세트 군집화
    ___GMM과 K-평균의 비교
    05. DBSCAN
    ___DBSCAN 개요
    ___DBSCAN 적용하기 - 붓꽃 데이터 세트
    ___DBSCAN 적용하기 - make_circles( ) 데이터 세트
    06. 군집화 실습 - 고객 세그먼테이션
    ___고객 세그먼테이션의 정의와 기법
    ___데이터 세트 로딩과 데이터 클렌징
    ___RFM 기반 데이터 가공
    ___RFM 기반 고객 세그먼테이션
    07. 정리

    ▣ 8장 텍스트 분석
    ___NLP이냐 텍스트 분석이냐?
    01. 텍스트 분석 이해
    ___텍스트 분석 수행 프로세스
    ___파이썬 기반의 NLP, 텍스트 분석 패키지
    02. 텍스트 사전 준비 작업(텍스트 전처리) - 텍스트 정규화
    ___클렌징
    ___텍스트 토큰화
    ___스톱 워드 제거
    ___Stemming과 Lemmatization
    03. Bag of Words - BOW
    ___BOW 피처 벡터화
    ___사이킷런의 Count 및 TF-IDF 벡터화 구현: CountVectorizer, TfidfVectorizer
    ___BOW 벡터화를 위한 희소 행렬
    ___희소 행렬 - COO 형식
    ___희소 행렬 - CSR 형식
    04. 텍스트 분류 실습 - 20 뉴스그룹 분류
    ___텍스트 정규화
    ___피처 벡터화 변환과 머신러닝 모델 학습/예측/평가
    ___사이킷런 파이프라인(Pipeline) 사용 및 GridSearchCV와의 결합
    05. 감성 분석
    ___감성 분석 소개
    ___지도학습 기반 감성 분석 실습 - IMDB 영화평
    ___비지도학습 기반 감성 분석 소개
    ___SentiWordNet을 이용한 감성 분석
    ___VADER를 이용한 감성 분석
    06. 토픽 모델링(Topic Modeling) - 20 뉴스그룹
    07. 문서 군집화 소개와 실습(Opinion Review 데이터 세트)
    ___문서 군집화 개념
    ___Opinion Review 데이터 세트를 이용한 문서 군집화 수행하기
    ___군집별 핵심 단어 추출하기
    08. 문서 유사도
    ___문서 유사도 측정 방법 - 코사인 유사도
    ___두 벡터 사잇각
    ___Opinion Review 데이터 세트를 이용한 문서 유사도 측정
    09. 한글 텍스트 처리 - 네이버 영화 평점 감성 분석
    ___한글 NLP 처리의 어려움
    ___KoNLPy 소개
    ___데이터 로딩
    10. 텍스트 분석 실습 - 캐글 Mercari Price Suggestion Challenge
    ___데이터 전처리
    ___피처 인코딩과 피처 벡터화
    ___릿지 회귀 모델 구축 및 평가
    ___LightGBM 회귀 모델 구축과 앙상블을 이용한 최종 예측 평가
    11. 정리

    ▣ 9장: 추천 시스템
    01. 추천 시스템의 개요와 배경
    ___추천 시스템의 개요
    ___온라인 스토어의 필수 요소, 추천 시스템
    ___추천 시스템의 유형
    02. 콘텐츠 기반 필터링 추천 시스템
    03. 최근접 이웃 협업 필터링
    04. 잠재 요인 협업 필터링
    ___잠재 요인 협업 필터링의 이해
    ___행렬 분해의 이해
    ___확률적 경사 하강법을 이용한 행렬 분해
    05. 콘텐츠 기반 필터링 실습 - TMDB 5000 영화 데이터 세트
    ___장르 속성을 이용한 영화 콘텐츠 기반 필터링
    ___데이터 로딩 및 가공
    ___장르 콘텐츠 유사도 측정
    ___장르 콘텐츠 필터링을 이용한 영화 추천
    06. 아이템 기반 최근접 이웃 협업 필터링 실습
    ___데이터 가공 및 변환
    ___영화 간 유사도 산출
    ___아이템 기반 최근접 이웃 협업 필터링으로 개인화된 영화 추천
    07. 행렬 분해를 이용한 잠재 요인 협업 필터링 실습
    ___Surprise 패키지 소개
    08. 파이썬 추천 시스템 패키지 - Surprise
    ___Surprise를 이용한 추천 시스템 구축
    ___Surprise 주요 모듈 소개
    ___Surprise 추천 알고리즘 클래스
    ___베이스라인 평점
    ___교차 검증과 하이퍼 파라미터 튜닝
    ___Surprise를 이용한 개인화 영화 추천 시스템 구축
    09. 정리

    ▣ 10장: 시각화
    01. 시각화를 시작하며 - 맷플롯립과 시본 개요
    02. 맷플롯립(Matplotlib)
    ___맷플롯립의 pyplot 모듈의 이해
    ___pyplot의 두 가지 중요 요소 - Figure와 Axes 이해
    ___Figure와 Axis의 활용
    ___여러 개의 plot을 가지는 subplot들을 생성하기
    ___pyplot의 plot( ) 함수를 이용해 선 그래프 그리기
    ___축 명칭 설정, 축의 눈금(틱)값 회전, 범례(legend) 설정하기
    ___여러 개의 subplots들을 이용해 개별 그래프들을 subplot별로 시각화하기
    03. 시본(Seaborn)
    ___시각화를 위한 차트/그래프 유형
    ___정보의 종류에 따른 시각화 차트 유형
    ___히스토그램(Histogram)
    ___카운트 플롯
    ___바 플롯(barplot)
    ___barplot( ) 함수의 hue 인자를 사용하여 시각화 정보를 추가적으로 세분화하기
    ___박스 플롯
    ___바이올린 플롯
    ___subplots를 이용하여 시본의 다양한 그래프를 시각화
    ___산점도, 스캐터 플롯(Scatter Plot)
    ___상관 히트맵(Correlation Heatmap)
    04. 정리

출판사 서평

★ 이 책의 특징 ★

◎ 분류, 회귀, 차원 축소, 클러스터링 등 핵심 머신러닝 알고리즘에 대한 깊이 있는 설명
◎ 데이터 전처리, 머신러닝 알고리즘 적용, 하이퍼 파라미터 튜닝, 성능 평가 등 최적 머신러닝 모델 구성 방안 제시
◎ XGBoost, LightGBM, 스태킹 등 머신러닝 최신 기법에 대한 상세한 설명과 활용법
◎ 난이도 높은 캐글 문제를 직접 따라 해 보면서 실무 머신러닝 애플리케이션 개발 방법 체득(산탄테르 은행 고객 만족 예측, 신용카드 사기 검출, 부동산 가격 예측 고급 회귀 기법, Mercari 쇼핑몰 가격 예측 등)
◎ 텍스트 분석과 NLP를 위한 기반 이론과 다양한 실습 예제 제공(텍스트 분류, 감성 분석, 토픽 모델링, 문서 유사도, 문서 군집화와 유사도, KoNLPy를 이용한 네이버 영화 감성 분석 등)
다양한 추천 시스템을 직접 파이썬 코드로 구축하는 법을 제공

기본정보

상품정보 테이블로 ISBN, 발행(출시)일자 , 쪽수, 크기, 총권수, 시리즈명을(를) 나타낸 표입니다.
ISBN 9791158393229
발행(출시)일자 2022년 04월 21일
쪽수 724쪽
크기
187 * 239 * 37 mm / 1432 g
총권수 1권
시리즈명
위키북스 데이터 사이언스 시리즈

Klover 리뷰 (19)

구매 후 리뷰 작성 시, e교환권 200원 적립

사용자 총점

10점 중 9.9점
10점 중 10점
94%
10점 중 7.5점
6%
10점 중 5점
0%
10점 중 2.5점
0%

29%의 구매자가
도움돼요 라고 응답했어요

24%

집중돼요

29%

도움돼요

18%

쉬웠어요

12%

최고예요

18%

추천해요

10점 중 10점
/추천해요
유용한 책인것은 분명하나 개정 2판임에도 불구하고 검수를 안하신건지 오탈자가 너무 많습니다. 초반에는 없으나 읽으면 읽을수록 많네요. 자잘한 오탈자까지는 이해하나 복붙된 내용도 있고 심지어 예제 코드에서 다른 내용의 코드가 복붙된 경우도 있어요. 깃헙을 참고하면 되긴 하지만 제 값을 주고 산 사람으로서 안좋은 마음이 조금 있네요
10점 중 10점
/도움돼요
파이썬을 통해 머신러닝을 공부한다면 무조건 봐야하는 필독서
10점 중 10점
/쉬웠어요
책이 아주 좋습니다.
10점 중 10점
/최고예요
쉽게 잘 읽히는 책입니다
10점 중 10점
/도움돼요
도움이 되던 책이었습니다
10점 중 7.5점
/도움돼요
머신러닝의 기초 예제가 담겨있고 이를 따라해보며이해가능합니다
10점 중 10점
/추천해요
머신러닝 개념 복습하는데 도움이 되었습니다.
10점 중 10점
/도움돼요
핸즈온 머신러닝 책과 함께 보는데, 접근성이 더 좋은 것 같아요
10점 중 10점
/최고예요
머신러닝에 대한 실습 위주의 책입니다. 하지만 이론적인 내용도 어느 정도 제공하기 때문에, 이해하는 데는 크게 무리가 없습니다.
10점 중 10점
/집중돼요
너무나도 큰도움이 되는 책입니다 꼭 추천드립니다.

문장수집 (5)

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)

구매 후 리뷰 작성 시, e교환권 100원 적립

이론 위주의 머신러닝 책에서 탈피해 다양한 실전 예제를 직접 구현
파이썬 머신러닝 완벽 가이드
가라르도감
파이썬 머신러닝 완벽 가이드

교환/반품/품절 안내

  • 반품/교환방법

    마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환 신청, [1:1 상담 > 반품/교환/환불] 또는 고객센터 (1544-1900)
    * 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900)
  • 반품/교환가능 기간

    변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
  • 반품/교환비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
  • 반품/교환 불가 사유

    1) 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
    2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
    3) 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
    6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
    8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
    9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등
  • 상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로 안내드리겠습니다.
  • 소비자 피해보상 환불 지연에 따른 배상

    1) 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁 해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

용선생 추론독해 초등 국어 3단계
이벤트
  • 사카모토 데이즈 20권
  • 팬텀 버스터즈 출간 기념!
01 / 02
TOP