텐서플로 2와 머신러닝으로 시작하는 자연어 처리
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
로그아웃 : '서울시 종로구 종로1' 주소 기준
이달의 꽃과 함께 책을 받아보세요!
1권 구매 시 결제 단계에서 적용 가능합니다.
알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.
이 책의 이벤트
해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
키워드 Pick
키워드 Pick 안내
관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

또한 두 차례의 개정을 통해, 다양한 자연어 처리 문제를 사전학습 모델인 버트와 GPT2를 통해 푸는 법과 GPT3에 대한 소개도 추가했습니다. 새롭게 추가된 8장까지의 모든 실습을 수행하고 나면 한층 더 높은 수준의 최신 자연어 처리 기법을 이해할 수 있습니다. 실습을 통해 자연어 처리를 다룰 자신감이 생겼다면 여러분은 이미 딥러닝 자연어 처리 전문가로서의 첫발을 내디딘 것입니다.
이 책의 총서 (79)
작가정보
배우고 성장하기 위해 끊임없이 공부하는 것을 즐기며, 해마다 목표를 정하고 이뤄가는 재미에 푹 빠져 살아가고 있습니다. 배운 것을 만들어 보고 이론과 실습을 함께 키워나가고 삶의 방향성을 찾기 위해 책을 읽는 시니어 개발자입니다. 머신러닝 공부를 하면서 2016년 Google Hack Fair, Seoul Make Fair에 참여했고, 국립과천과학관 관장상과 2017년 서울혁신챌린지 혁신챌린지상을 수상했으며, KBS 시사교양 프로그램인 『명견만리』에 출연하고, 2018년 국어 정보처리 시스템 경진대회에서 금상을 수상, 2019년 국어 정보처리 학회에서 논문 발표, 2020년 LG AWARDS를 수상, 2020년 7월 korquad 1.0에서 1위를 하였고 2021년 9월 squad 1.1에서 1위를 차지하였습니다. 전 DeepNLP 연구실 리더였으며, 현재는 LG에서 딥러닝을 활용한 자연어처리 연구 개발을 하고 있습니다.
클래식 음악을 듣기 좋아하고 오랫동안 산책을 즐기는 소프트웨어 개발자입니다. 컴퓨터 분야에 이것저것 관심을 두다 딥러닝과 자연어 처리를 우연히 접하게 되어 재미를 키워가고 있습니다. 서경대학교 컴퓨터과학과를 졸업했고 현재는 네이버에서 근무하고 있습니다.
중앙대학교 수학과를 졸업하고 현재 토스증권에서 Data Scientist로 일하고 있습니다. 세상의 다양한 실제 문제들을 딥러닝을 통해 해결함으로써 더 나은 가치를 만들어내는 것을 목표로 삼고 있습니다.
목차
- ▣ 01장: 들어가며
배경
이 책의 목표와 활용법
실습 환경 구축
__아나콘다 설치
__가상 환경 구성
__실습 프로젝트 구성
__pip 설치
__주피터 노트북
정리
▣ 02장: 자연어 처리 개발 준비
텐서플로
__tf.keras.layers
__TensorFlow 2.0
사이킷런
__사이킷런을 이용한 데이터 분리
__사이킷런을 이용한 지도 학습
__사이킷런을 이용한 비지도 학습
__사이킷런을 이용한 특징 추출
__TfidfVecotorizer
자연어 토크나이징 도구
__영어 토크나이징 라이브러리
__한글 토크나이징 라이브러리
그 밖의 라이브러리(전처리)
__넘파이
__판다스
__Matplotlib
__맷플롯립 설치
__Matplotlib.pyplot
__re
캐글 사용법
정리
▣ 03장: 자연어 처리 개요
단어 표현
텍스트 분류
__텍스트 분류의 예시
텍스트 유사도
자연어 생성
기계 이해
데이터 이해하기
정리
▣ 04장: 텍스트 분류
영어 텍스트 분류
__문제 소개
__데이터 분석 및 전처리
__모델링 소개
__회귀 모델
__TF-IDF를 활용한 모델 구현
__랜덤 포레스트 분류 모델
__순환 신경망 분류 모델
__합성곱 신경망 분류 모델
__마무리
한글 텍스트 분류
__문제 소개
__데이터 전처리 및 분석
__모델링
__참고 자료
정리
▣ 05장: 텍스트 유사도
문제 소개
데이터 분석과 전처리
__XG 부스트 텍스트 유사도 분석 모델
모델링
__CNN 텍스트 유사도 분석 모델
__MaLSTM
정리
▣ 06장: 챗봇 만들기
데이터 소개
데이터 분석
시퀀스 투 시퀀스 모델
__모델 소개
트랜스포머 모델
__모델 구현
정리
▣ 07장: 사전 학습 모델
버트
버트를 활용한 미세 조정 학습
__버트를 활용한 한국어 텍스트 분류 모델
__버트를 활용한 한국어 자연어 추론 모델
__버트를 활용한 한국어 개체명 인식 모델
__버트를 활용한 한국어 텍스트 유사도 모델
__버트를 활용한 한국어 기계 독해 모델
GPT
__GPT1
__GPT2
GPT2를 활용한 미세 조정 학습
__GPT2를 활용한 한국어 언어 생성 모델
__GPT2를 활용한 한국어 텍스트 분류 모델
__GPT2를 활용한 한국어 자연어 추론 모델
__GPT2를 활용한 한국어 텍스트 유사도 모델
정리
▣ 08장: GPT3
GPT3 개요
퓨샷 러닝
퓨샷 러닝을 활용한 텍스트 분류
__퓨샷 러닝을 위한 네이버 영화 리뷰 모델 구성
__퓨샷 러닝을 위한 네이버 영화 리뷰 데이터 구성
__네이버 영화 리뷰 데이터를 활용한 퓨샷 러닝 및 평가
피-튜닝
__개요
__피-튜닝 방법론
__피-튜닝을 활용한 텍스트 분류 적용
추천사
-
"이론적인 설명에서 그치지 않고 데이터셋을 자세히 들여다보면서 인사이트를 얻고, 코드 레벨까지 깊게 내려가면서 이론을 손으로 만지듯 더듬으면서 이해할 수 있게 해주며, 간단한 딥러닝 코드가 만들어 내는 경이로운 정확도를 직접 확인할 수 있게 해주는 멋진 가이드가 될 것이다."
-
"딥러닝의 필수 요소에 대한 소개, 트랜스포머(Transformer) 같은 최신 모델에 대한 구체적인 설명까지 필요한 내용을 빠짐없이 다뤘습니다. 자연어 처리에 입문하려는 분들에게 이 책이 하나의 선택지로 자리하게 된 것을 다행스럽게 생각합니다."
-
"단순히 최신 딥러닝 기반 자연어 처리 기술을 소개하는 것이 아니라 실질적인 코딩과 한국어의 특성 등을 충분히 어필하고 있기에 실제 자연어 처리를 도입해서 새로운 서비스나 앱 등을 개발하려는 분들에게 큰 도움이 될 것이다."
-
"복잡한 이론적 내용 때문에 어렵게만 여겨지던 딥러닝을 이 책을 통해 많은 사람들이 쉽고 재미있게 배울 수 있을 것이다."
-
"이런 좋은 책을 한글로 써주신 저자분께 감사드리며, 자연어 처리에 관심이 있는 분들께 많은 도움이 되리라 생각합니다. 강추합니다."
-
"한국어로 쓰여진 자연어 처리 서적 가운데 이보다 방대하고 친절한 책은 없을 것이다."
기본정보
ISBN | 9791158393168 | ||
---|---|---|---|
발행(출시)일자 | 2022년 03월 24일 | ||
쪽수 | 600쪽 | ||
크기 |
177 * 235
* 34
mm
/ 1273 g
|
||
총권수 | 1권 | ||
시리즈명 |
위키북스 데이터 사이언스 시리즈
|
Klover 리뷰 (0)
구매 후 리뷰 작성 시, e교환권 200원 적립
문장수집 (0)
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)
구매 후 리뷰 작성 시, e교환권 100원 적립
-
반품/교환방법
* 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900) -
반품/교환가능 기간
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내 -
반품/교환비용
-
반품/교환 불가 사유
(단지 확인을 위한 포장 훼손은 제외)
2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
예) 화장품, 식품, 가전제품(악세서리 포함) 등
3) 복제가 가능한 상품 등의 포장을 훼손한 경우
예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등 -
상품 품절
-
소비자 피해보상 환불 지연에 따른 배상
2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함
상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)