Mechatronics for Complex Products and Systems
없습니다
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
로그아웃 : '서울시 종로구 종로1' 주소 기준
이달의 꽃과 함께 책을 받아보세요!
1권 구매 시 결제 단계에서 적용 가능합니다.
알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.
작가정보
저자(글) Bi, Zhuming
목차
- Preface xvii About the Companion Website xix 1 Introduction 1 1.1 Introduction 1 1.2 Growing Complexity of Engineering Designs 1 1.2.1 Products 3 1.2.2 Manufacturing Technologies 5 1.2.3 Business Environments 6 1.2.4 Engineering Design 6 1.3 Integrated Engineering Design 7 1.4 Mechatronics for Multi- or Interdisciplinary Designs 9 1.5 Mechatronic Design Examples 11 1.5.1 Development of Football Robot Team 11 1.5.2 Reusing Robots to Unload Heat Sinks Automatically 12 1.5.3 Rebuilding Rail Test Machine 14 1.5.4 Testing of Electric Hardness 16 1.5.5 Valve Needle Assembly Station 16 1.5.6 Ejecting Engine Fans from Performance Tester 18 1.5.7 Demonstrator of Automated Spacer Removals in Truck Assembly Line 19 1.6 Group Technologies (GTs) for Mechatronic Designs 21 1.7 Mechatronics and Mechatronic Functional Modules (MFMs) 22 1.8 Mechatronic Design Methodologies 24 1.9 Organization of the Book 25 1.10 Summary 26 Problems 28 References 28 2 Mechatronic Designs - Innovations, Theories, and Methods 31 2.1 Innovative Thinking 31 2.2 Theory of Inventive Problem-Solving (TRIZ) as Tactic Methodology 34 2.3 Innovations of Mechatronic Systems 39 2.3.1 Modularization 39 2.3.2 Integrability 41 2.3.3 Coupled Discipline Modeling 42 2.3.4 Concurrent Design 43 2.3.5 Decentralized Controls 45 2.3.6 Event-Driven Automation 46 2.3.7 Adaptability and Re-configurability 46 2.3.8 Predictability 48 2.3.9 System Resilience 49 2.3.10 Continuous Adaptation (CA) 50 2.4 Architecture of Mechatronic Systems 51 2.5 Design of Mechatronic Systems 54 2.6 Mechatronic Design Methodologies 57 2.6.1 System Modeling Language (SysML) 58 2.6.2 Model-Based System Engineering (MBSE) 59 2.6.3 Axiomatic Design Theory (ADT) 61 2.6.4 Concurrent Design Optimization (CDO) 63 2.6.5 Virtual Verification and Validation (VVV) 65 2.7 Project-Based Mechatronic Design (PBMD) 65 2.7.1 Existing Assistive Evacuating Technologies 66 2.7.2 Proposed Assistive Evacuation Device 69 2.7.3 Main Functional Requirements from Use Cases 69 2.7.4 Project-Based Mechatronic Designs 72 2.7.4.1 Folding and Unfolding Mechanism 72 2.7.4.2 Reaction Forces on Tracks for Structural Elements 72 2.7.4.3 Motor for Lifting Mechanism 74 2.7.4.4 Control of Evacuation Device 76 2.7.4.5 PBMD in Mechatronic Design 77 2.8 Summary 77 Problems 78 References 81 3 Power Generation, Storage, Supply and Transmission 87 3.1 Introduction 87 3.2 Energy, Work, and Power 87 3.3 Energy Source 90 3.4 Driving Components - Functional Requirements (FRs) 91 3.5 Power Transmission 93 3.5.1 Functional Requirements (FRs) 94 3.5.2 Machine Elements for Power Transmission 95 3.5.3 Types of Machine Elements 95 3.5.4 Procedure in Designing or Selecting Machine Elements 95 3.5.5 Machine Elements in Mechatronic Systems 98 3.5.6 Mechanical Power Transmission Examples 98 3.6 Power Generation 100 3.6.1 Internal Combustion (IC) Generator 102 3.6.2 Solar Power Generator 103 3.6.3 Wind Turbine Generator 105 3.6.4 Geothermal Generator 105 3.6.5 Other Generators 106 3.6.6 Selection of Power Source for Mechatronic System 107 3.7 Requirements of Power Supplies and Storages 109 3.7.1 Requirements of Power Supplies 109 3.7.2 Classification of Energy Storage Systems 111 3.7.3 Flywheel Energy Storage System (FESS) 112 3.7.4 Pumped Hydro Energy Storage (PHES) 114 3.7.5 Compressed Air Energy Storage (CAES) 115 3.7.6 Gravity Energy Storage (GES) 115 3.7.7 Electrical Energy Storage (EES) 116 3.7.8 Thermal Energy Storage (TES) 118 3.7.9 Comparison of Different Energy Storages 120 3.8 Selection of Power Supplies 122 3.9 Summary 122 Problems 122 References 123 4 Actuating Systems 127 4.1 Introduction 127 4.2 Functional Requirements (FRs) 129 4.3 Design Variables (DVs) 132 4.4 Basics of Energy Conversion 135 4.4.1 Mechanical Energy Conversion 135 4.4.2 Electromechanical Energy Conversion 140 4.4.3 Thermomechanical Energy Conversion 148 4.4.4 Electro-stimulated Materials 149 4.4.5 Magneto-rheological Fluid Energy Conversion 151 4.4.6 Nano-level Energy Conversion 152 4.5 Main Components 153 4.6 Valve and Electric Actuators 154 4.6.1 Valve Actuators 155 4.6.2 Electric Actuators and Motors 157 4.6.3 Selection of Motors 160 4.7 Summary 161 Problems 161 References 162 5 Sensing Systems 165 5.1 Introduction 165 5.2 Sensors, Actuators, and Transducers 169 5.3 Classifications 170 5.3.1 Types of Quantities to be Measured 170 5.3.2 Requirements Related to Measurement 171 5.3.3 Specifications Related to Measurement 171 5.4 Working Principles 173 5.4.1 Hooke's Law 173 5.4.2 Ohm's Law 175 5.4.3 Photoconductivity 176 5.4.4 Hall Effect 177 5.4.5 Faraday's Law of Induction 178 5.4.6 Curie-Weiss Law 179 5.4.7 Time of Flight (ToF) 181 5.5 Types of Physical Quantities 182 5.5.1 Displacement, Position, and Proximity 182 5.5.2 Velocity 184 5.5.3 Acceleration 186 5.5.4 Force 188 5.5.4.1 Direct Contact Sensors 188 5.5.4.2 Piezoelectric Sensors 189 5.5.4.3 Conventional Force Sensors 190 5.5.5 Pressure 191 5.5.6 Contacts 193 5.5.7 Temperature 195 5.5.8 Chemical Particles 197 5.6 Optical Encoders 199 5.6.1 Resolutions 199 5.6.2 Decoding 202 5.7 Sensors in MEMS 203 5.8 Summary 205 Problems 205 References 207 6 Bridging Physical and Cyber Systems 209 6.1 Introduction 209 6.2 Characteristics of Signals 209 6.2.1 Analog Signals 209 6.2.2 Digital Signals 211 6.3 Conversions of Digital and Analog Signals 212 6.4 Basic Electronic Elements for DSP 213 6.4.1 Operational Amplifiers (Op-Amps) 213 6.4.2 Comparators 216 6.5 Digitization 217 6.5.1 Sampling 217 6.5.2 Quantizing 220 6.5.3 Sampling and Quantizing in Analog-to-Digital Conversion (ADC) 221 6.6 Analog-to-Digital Conversion (ADC) 225 6.6.1 Integrating ADC 226 6.6.2 Flash Converter 227 6.6.3 Successive Approximation 228 6.7 Holding Process in Sampling 236 6.8 Digital-to-Analog Conversion (DAC) 237 6.8.1 Weighted Resistor DAC 237 6.8.2 R-2R Ladder DAC 239 6.8.3 Quantization Noise 240 6.9 Summary 241 Problems 241 References 242 7 Signal Conditioning and Processing 245 7.1 Introduction 245 7.2 Basic Concepts in Electronic Circuits 245 7.2.1 Charge, Current, Voltage, and Power 245 7.2.2 Resistor, Capacitor, and Inductor 248 7.2.3 Input Loading and Output Loading 250 7.2.4 Basic Types of Signals 251 7.2.5 Main Parameters of Periodical Signals 254 7.2.6 Amplitude and Phase Changes 254 7.2.7 Wheatstone Bridges 257 7.3 Signal Cleaning 259 7.4 Signal Isolation 260 7.4.1 Optical Isolation by Light-Emitting Diodes (LEDs) 260 7.4.2 Capacitive Isolation by Capacitor 261 7.4.3 Inductive Isolation by Inductor 261 7.5 Signal Transmission 262 7.5.1 Switches 262 7.5.2 Multiplexer 262 7.5.3 Protection from High Voltage and Current 264 7.5.4 Modulation/Demodulation 265 7.6 Signal Conditioning 266 7.6.1 Amplification 266 7.6.2 Attenuation 271 7.6.3 Filtering 271 7.6.4 Linearization 275 7.6.5 Conditioning Digital Signals 275 7.6.6 Signal Clipping 277 7.7 Signal Clamping 277 7.8 Summary 278 Problems 278 References 279 8 System Controls 281 8.1 Basics of Control Systems 281 8.1.1 Complexity of Control Problem 281 8.1.2 Types of Control Problems 283 8.1.3 Architecture of Control Systems 284 8.1.4 Design of Control Systems 285 8.2 Control Theory 286 8.2.1 Open-Loop Control Versus Closed-Loop Control 286 8.2.2 Process Control Versus Motion Control 287 8.2.3 Steady Response Versus Transient Response 288 8.2.4 Transfer Functions 288 8.2.5 Orders of Control Systems 292 8.2.6 Stability Analysis 295 8.2.7 Accuracy of Control Systems 299 8.2.8 Classification of Control Systems 302 8.2.9 Frequency Responses 303 8.3 Proportional-Integral-Derivative (PID) Controls 305 8.4 Analog and Digital Implementation of PID Controllers 307 8.5 Advanced Controls 309 8.6 Intelligent Controls 309 8.6.1 Fuzzy Logic 310 8.6.2 Artificial Neural Network (ANN) 310 8.7 Design of Control System 312 8.7.1 Microcontrollers 313 8.7.2 Digital Signal Processing (DSP) 313 8.7.3 Field Programmable Gate Arrays (FPGA) 315 8.7.4 Microcomputers 316 8.7.5 Programmable Logic Controller (PLC) 316 8.8 Programming in PLC 318 8.8.1 Data Structure and Flow 318 8.8.2 Operating Cycle 319 8.8.3 I/O Modules and Addresses 319 8.8.4 Elements of Logic Control 322 8.8.5 Ladder Logic Diagrams 325 8.8.6 Timers and Counters 327 8.8.7 Sequencers 328 8.9 Summary 330 Problems 331 References 333 9 Digital Twins (DT-I), Digital Triads (DT-II), and Internet of Digital Triads Things (IoDTT) 335 9.1 Introduction 335 9.2 Digital Twins (DT-I) 338 9.3 Enabling Technologies 339 9.3.1 Data Acquisition 339 9.3.2 Modeling and Simulation 340 9.3.3 Communication Technologies 340 9.3.4 Cloud Technologies 340 9.3.5 Big Data Analytics (BDA) 342 9.4 From Digital to Physical Twins by Manufacturing 342 9.5 DT-Is in Manufacturing 343 9.5.1 System Digitization 347 9.5.2 Interactions of Physical and Digital Worlds 348 9.5.3 Historical Development of DT-I 349 9.5.4 Communication and Integration 351 9.5.5 System Architecture 353 9.6 Limitations of DT-Is 354 9.7 Advanced Attributes of Digital Entities in Manufacturing 355 9.8 Concept of Digital Triad (DT-II) 356 9.9 The Internet of Digital Triads Things (IoDTT) 360 9.10 DT-Is and DT-IIs in Sustainable Mechatronic Systems 362 9.10.1 Monitoring and Controlling 362 9.10.2 Data-Driven Decision-Making 364 9.10.3 Fault Detections 366 9.10.4 Predication of Fatigue Life 368 9.10.5 Virtual Verification and Validation (V and V) 370 9.11 Summary 371 Problems 371 References 374 10 Cyber-Physical Systems 379 10.1 Introduction 379 10.2 Characteristics of CPSs 382 10.3 Basic Features of Cyber System of CPS 384 10.3.1 Reactive Computation 385 10.3.2 Parallel Computing 385 10.3.3 Feedback Controls 385 10.3.4 Realtime-Ness 385 10.3.5 Dependability, Reliability, and Safety Assurance 386 10.3.6 Biological Intelligence 387 10.3.7 Hybrid Systems 387 10.3.8 Embedded Computation 387 10.3.9 Standards of Cyber Systems 387 10.4 Design of CPSs 387 10.5 Mathematical Modeling 388 10.5.1 Modeling Continuous Dynamics 391 10.5.2 Discrete Event Dynamic System (DEDS) 396 10.5.3 Hybrid Modeling 398 10.5.4 State Machines 400 10.6 Development Standards 403 10.7 Model-Based System Engineering (MBSE) 404 10.7.1 Modeling in MBSE 404 10.7.2 Design Stages in MBSE 405 10.7.3 Acausality Modeling by Modelica 406 10.7.4 Programming in Modelica 409 10.7.5 Formal Semantics 412 10.7.6 Verification and Validation (V&V) 414 10.8 Summary 415 Problems 416 References 418 11 Internet of Things 421 11.1 Introduction 421 11.1.1 IoT Concepts 422 11.1.2 Smart Things 424 11.1.3 Communication Protocols 425 11.2 Characteristics of IoT-Enabled Systems 427 11.3 Importance of IoT in Mechatronics 428 11.4 Data Flows in IoT-Enabled Systems 431 11.5 IoT-Enabled Capabilities 432 11.5.1 Interactions 433 11.5.2 Big Data Analytics (BDA) 435 11.5.3 Digital Manufacturing (DM) 435 11.6 Project-Based IoT-Enabled System Development 438 11.6.1 Ubiquitous Sensing 439 11.6.2 Fusing and Integrating Data from Heterogeneous Sources 439 11.6.3 Methods of Coping with Big Data 440 11.6.4 Surveillance and Data Visualization 441 11.6.5 Workflow Composition 441 11.6.6 Standardization of Specifications 444 11.6.7 Data Acquisition, Classification, and Utilization 444 11.7 Summary and Conclusion 445 Problems 447 References 447 12 Robotics 451 12.1 Introduction 451 12.2 Classifications 454 12.3 Basic Terminologies in Robotics 456 12.3.1 Mechanical Structure 457 12.3.2 Degrees of Freedom (DOF) 458 12.3.3 Workspaces 462 12.3.4 Modeling and Simulation 464 12.3.5 Accuracy, Precision, and Calibration 464 12.3.6 Other Specifications 465 12.4 Kinematic Modeling 466 12.4.1 Positions of Points, Links, and Bodies in 2D and 3D Space 466 12.4.2 Motions of Particles, Links, and Bodies 468 12.4.3 Vector-Loop Method for Motion Analysis of Plane Mechanism 473 12.4.3.1 Kinematic Parameters and Variables 477 12.4.3.2 Inverse Kinematics 477 12.4.3.3 Forward Kinematics 478 12.4.4 Denavit-Hartenberg (D-H) Notation 479 12.4.5 Jacobian Matrix for Velocity Relations 481 12.5 Dynamic Modeling 491 12.5.1 Inertia and Moments of Inertia 491 12.5.2 Newton-Euler Formulation 493 12.5.3 Lagrangian Method 498 12.6 Kinematic and Dynamics Modeling in Virtual Design 500 12.6.1 Motion Simulation 502 12.6.2 Model Preparation 502 12.6.3 Creation of Simulation Model 504 12.6.4 Define Motion Variables 504 12.6.5 Setting Simulation Parameters 506 12.6.6 Run Simulation and Visualize Motion 506 12.6.7 Analyze Simulation Data 507 12.6.8 Structural Simulation Using Motion Loads 508 12.6.9 Summary on Kinematic and Dynamic Modeling 510 12.7 Mobile Robots 511 12.7.1 Three-Wheeled Robots 514 12.7.2 Four-Wheeled Robots 515 12.7.3 Unmanned Aerial Vehicles (UAVs) 516 12.8 Robotic Programming 519 12.9 Summary 521 Problems 521 References 524 13 End-Effectors 527 13.1 Introduction 527 13.2 Grasping Theory 528 13.2.1 Contacts on Object 528 13.2.2 Motions and Forces 530 13.2.3 Frictions 531 13.2.4 Grasping Model 533 13.2.5 Form Closure 534 13.2.6 Force Closure 536 13.2.7 Quality of Grasping 537 13.3 Mechatronic Design of End-Effectors 537 13.3.1 Mechanical and Actuating Components 538 13.3.2 Sensing Components 541 13.3.3 Control Components 542 13.4 Evaluation of Grasping Performance 544 13.5 Grasping Configurations 545 13.6 Types of End-Effectors 546 13.6.1 Types of Grippers 546 13.6.2 Types of Processing Tools 548 13.6.3 Multifunctional Tools 549 13.6.3.1 Concepts 550 13.6.3.2 Classification 550 13.6.3.3 Advantages and Disadvantages 554 13.6.3.4 Selection Principles 556 13.6.3.5 Development Trends 556 13.7 Main Factors in Designing an End-Effector 558 13.8 Computer-Aided Design Tools for End-Effectors 560 13.9 Summary 560 Problems 560 References 561 14 Metaverses for Sustainability Mechatronic Systems 565 14.1 Introduction 565 14.2 FRs of Sustainable Mechatronic Systems 566 14.2.1 Scalability, Accessibility, Security, Privacy, and Legal Issues 568 14.2.2 First-Time-Right from Virtual to Physical World 568 14.2.3 Ubiquitous Data and Computing 568 14.2.4 Diagonalizability, Predictability, and Adaptability 569 14.2.5 Human Intelligence for Uncertainty and Changes 570 14.2.6 Data-Driven Decision-Making Supports 571 14.3 Metaverse and Relevant Technologies 573 14.3.1 Architecture or Framework 574 14.3.2 Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and Extended Reality (ER) 576 14.3.3 Digital Twins (DTs), Cyber-Physical Systems 578 14.3.4 Internet of Things (IoT) and Edge Computing 579 14.3.5 Big Data Analytics (BDA) and Cloud Computing (CC) 581 14.3.6 Blockchain Technologies (BCTs) 581 14.3.7 Artificial Intelligence (AI) 583 14.3.8 Human-Machine Interactions (HMI) 585 14.3.9 Data-Driven Decision-Making Systems 586 14.4 Metaverses for Sustainability 587 14.4.1 Metaverses to Deal with Changes and Uncertainties 588 14.4.2 Sustainable Manufacturing 590 14.4.3 Framework of Metaverse Use Cases 590 14.4.4 Metaverses for Remote Access 592 14.5 Summary and Future Work 593 Problems 593 References 594 15 Human Cyber-Physical Systems (HCPS) 603 15.1 Introduction 603 15.2 Humans' Roles in CPS 605 15.3 Enabling Technologies 608 15.4 Human-Machine Interactions (HMI) 610 15.4.1 Collaborative Robots 610 15.4.2 Types of HMIs 612 15.4.3 Collaborative Machines in Manufacturing 613 15.4.4 Critical Requirements of Cobots 613 15.4.5 Safety Assurance Mechanisms for Cobots 616 15.4.5.1 Safety-Rated Monitored Stop (SRMS) 616 15.4.5.2 Hand Guiding (HG) 617 15.4.5.3 Speed and Separation Monitoring (SSM) 618 15.4.5.4 Power and Force Limiting (PFL) 618 15.4.6 Cobotic Systems 618 15.4.7 End-Effectors of Cobots 620 15.4.7.1 Affordable Force Monitoring 620 15.4.7.2 Ergonomic Protection of Grippers 621 15.4.8 Safety Assurance in HCPSs 622 15.5 Example of Assistive Technologies 622 15.5.1 Cobots in Healthcare 622 15.5.2 Conceptual Design of Cobot 623 15.5.3 Kinematic Model 624 15.5.4 Motion for Arbitrary Explicit Trajectory 625 15.5.5 Motions of Omniwheels 626 15.5.6 Dynamic Control Model 626 15.5.6.1 Analyses of Force on Omniwheels 627 15.5.6.2 Analyses of Force on Cobot Platform 628 15.5.6.3 Constraints to Maintain Contacts to Ground 629 15.5.6.4 Strategies of Cobot Controls 630 15.5.7 Simulation 631 15.5.8 Summary of HCPS as Assistive Technologies 632 15.6 Brain-Computer Interfaces (BCI) for Supervisory Controls 634 15.6.1 Unmanned Aerial Vehicles (UAVs) 634 15.6.2 UAV Controls 635 15.6.3 BCI for Effective HMI 636 15.6.4 Development of BCIs 638 15.6.4.1 Brain Signals 639 15.6.4.2 Data Acquisition 640 15.6.4.3 Feature Classification and Detection 642 15.6.5 BCI Development Platform 645 15.7 Summary 648 Problems 649 References 649 Index 657
기본정보
ISBN | 9781394209590 ( 1394209592 ) |
---|---|
발행(출시)일자 | 2025년 03월 11일 |
쪽수 | 704쪽 |
총권수 | 1권 |
언어 | 영어 |
Klover 리뷰 (0)
구매 후 리뷰 작성 시, e교환권 200원 적립
문장수집 (0)
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)
구매 후 리뷰 작성 시, e교환권 100원 적립
-
반품/교환방법
* 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900) -
반품/교환가능 기간
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내 -
반품/교환비용
-
반품/교환 불가 사유
(단지 확인을 위한 포장 훼손은 제외)
2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
예) 화장품, 식품, 가전제품(악세서리 포함) 등
3) 복제가 가능한 상품 등의 포장을 훼손한 경우
예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등 -
상품 품절
-
소비자 피해보상 환불 지연에 따른 배상
2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함
상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)