자연어 처리를 위한 허깅페이스 트랜스포머 하드 트레이닝
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
로그아웃 : '서울시 종로구 종로1' 주소 기준
이달의 꽃과 함께 책을 받아보세요!
1권 구매 시 결제 단계에서 적용 가능합니다.
알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.
키워드 Pick
키워드 Pick 안내
관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.
![허깅페이스 트랜스포머 하드 트레이닝 상세 이미지](https://contents.kyobobook.co.kr/sih/fit-in/814x0/dtl/illustrate/150/i9791165923150.jpg)
허깅페이스 모델 경량화, 정렬 조정, 강화 학습까지
Transformers 라이브러리를 기준으로 토크나이저 및 모델 준비, 한국어 자연어 이해 평가(KLUE) 데이터셋 전처리, 학습 파라미터 선정 및 학습 진행과 성능 평가를 실습해봅니다. 이후 사전학습 단계부터 직접 진행해야 하는 경우를 대비하여 Tokenizers 라이브러리에 대해 살펴보고 정확도, f1 스코어, 정밀도, 재현율을 기준으로 모델을 평가하는 Evaluate 라이브러리에 대해서 알아봅니다. PEFT, 양자화, QLoRA 미세조정과 같이 모델의 메모리 사용량은 줄이고 추론 속도는 높이는 경량화 기법에 대해 코드와 결과물로 꼼꼼하게 확인해본 후 RLHF, SFT, PPO, Best-of-N 샘플링 등 정렬 조정에 해당하는 다양한 방법론과 이를 강화학습을 위한 트랜스포머(TRL)를 통해 활용하는 방식까지 차근차근 학습합니다.
작가정보
통계학을 전공하였으며 DB 관리 및 솔루션 개발 3년 9개월, 스타트업 자연어 처리(Natural Language Processing, NLP) 개발 2년 8개월 경력을 쌓은 후 현재는 국내 식품 관련 기업 풀무원의 Data&AI 팀에서 대규모 언어 모델(Large Language Model, LLM)을 활용한 HR 어시스턴트, AICC 콜봇 개발을 하고 있습니다.
최근에는 자연어 처리 관련 모델과 LLM에 관해 주로 공부 중이며 항상 아는 지식을 공유하고 모르는 지식은 배우려는 자세로 임하고 있습니다.
現) 풀무원 Data&AI 팀 NLP 개발
前) AI 관련 스타트업 NLP 개발
前) 퓨쳐누리 DB 관리 및 솔루션 개발
- 깃허브 github.com/hipster4020
- 블로그 hipster4020.tistory.com
- 링크드인 linkedin.com/in/sunghwanpark4020
소프트웨어마이스터고등학교 소프트웨어개발과를 졸업했습니다. 2020년도에 디스코드 챗봇 개발 팀 ‘팀 크레센도’에서 활동하며 여러 챗봇 개발에 기여했고, 졸업 직후 취업해 5년 차 NLP 엔지니어로 재직 중이며 한국방송통신대학교 통계ㆍ데이터과학과 이수를 병행하고 있습니다.
현재는 sLM 사전학습, 프롬프트 엔지니어링 등의 자연어 처리 기술과 더불어 음성 인식 및 음성 합성에도 많은 관심을 가지고 공부하고 있습니다.
現) AI 관련 스타트업 NLP 개발
前) 디스코드 챗봇 개발팀 ‘팀 크레센도’ 활동
- 깃허브 github.com/Nam-SW
목차
- 1 자연어 처리와 허깅페이스
_1.1 허깅페이스 소개
__1.1.1 Datasets
__1.1.2 Models
__1.1.3 Spaces
__1.1.4 Docs
_1.2 자연어 처리와 허깅페이스의 관계
2 환경 구축
_2.1 구글 코랩 환경 구축
__2.1.1 계정 생성
__2.1.2 새 노트북 만들기
__2.1.3 코드 실행
__2.1.4 파일 저장
__2.1.5 깃 코드 열기
_2.2 구글 드라이브 마운트
3 허깅페이스 주요 라이브러리
_3.1 Datasets 라이브러리
__3.1.1 Datasets 설치
__3.1.2 Datasets 실습
_3.2 Transformers 라이브러리
__3.2.1 Transformers 설치
__3.2.2 Tokenizer
__3.2.3 DataCollator
__3.2.4 Model
__3.2.5 AutoClass
__3.2.6 Trainer, TrainingArguments
__3.2.7 Pipeline
_3.3 미세조정
__3.3.1 토크나이저와 모델 준비
__3.3.2 데이터 준비 및 전처리
__3.3.3 학습 파라미터 선정
__3.3.4 학습 진행
__3.3.5 성능 평가
__3.3.6 모델 저장
_3.4 허깅페이스 허브 등록
__3.4.1 push_to_hub()
__3.4.2 CLI
__3.4.3 huggingface-hub
4 보조 라이브러리
_4.1 Tokenizers 라이브러리
__4.1.1 Tokenizer 학습
__4.1.2 모델 초기화 후 학습
_4.2 Evaluate 라이브러리
__4.2.1 Evaluate 평가
__4.2.2 커스텀 메트릭 만들기
__4.2.3 Trainer 적용
5 언어 모델 구조 및 학습
_5.1 트랜스포머 모델
_5.2 인코더 기반 모델
__5.2.1 기본 구조
__5.2.2 Sequence Classification
__5.2.3 Multiple Choice
__5.2.4 Token Classification
__5.2.5 Question Answering
_5.3 디코더 기반 모델
__5.3.1 기본 구조
__5.3.2 Causal LM
__5.3.3 Question Answering
__5.3.4 Sequence Classification
_5.4 인코더-디코더 기반 모델
__5.4.1 기본 구조
__5.4.2 Conditional Generation
__5.4.3 Sequence Classification
__5.4.4 Question Answering
6 모델 활용
_6.1 모델 미세조정
__6.1.1 인코더 - Sequence Classification
__6.1.2 디코더 - Causal LM
__6.1.3 인코더-디코더 - Conditional Generation
__6.1.4 언어 모델 문장 생성
_6.2 모델 서빙
7 모델 경량화
_7.1 모델 경량화 개요
_7.2 PEFT
_7.3 양자화
_7.4 QLoRA 미세조정
8 TRL
_8.1 TRL 라이브러리 개요
_8.2 RLHF
_8.3 보상 모델 트레이닝
_8.4 SFT
_8.5 PPO
_8.6 Best-of-N 샘플링
_8.7 DPO
_8.8 KTO
_8.9 CPO
_8.10 ORPO
출판사 서평
추론 속도를 높이고 성능을 발전시키는
허깅페이스 라이브러리 하드 트레이닝
1장에서는 허깅페이스 허브에 등록된 모델 및 데이터셋을 확인해보고 자연어 처리와 허깅페이스의 관계에 대해 알아봅니다.
2장에서는 허깅페이스를 하드 트레이닝해보기에 앞서 구글 코랩 환경을 구축하고 구글 드라이브를 마운트합니다.
3장에서는 Datasets 라이브러리와 Transformers 라이브러리를 활용하여 토크나이저 및 모델 준비, KLUE 데이터셋 전처리, 학습 파라미터 선정 및 학습 진행과 성능 평가를 실습해봅니다.
4장에서는 사전학습 단계부터 직접 진행해야 하는 경우를 대비하여 Tokenizers 라이브러리에 대해 살펴봅니다. 그리고 정확도, f1 스코어, 정밀도, 재현율을 기준으로 모델을 평가하는 Evaluate 라이브러리에 대해 알아봅니다.
5장에서는 트랜스포머 모델, 인코더 기반 모델, 디코더 기반 모델, 인코더-디코더 기반 모델의 기본 구조를 살펴보고 문장 분류, 다중 선택, 토큰 분류, 질의 응답, 조건부 생성, 인과적 언어 모델(Causal LM) 태스크의 코드와 결과를 확인해봅니다.
6장에서는 모델 구조별 대표 태스크에 대해 미세조정(파인튜닝, fine-tuning)을 진행합니다. 확률적 특징의 이해를 돕는 수식과 꼭 필요한 메서드의 파라미터까지 함께 살펴볼 수 있습니다.
7장에서는 PEFT, 양자화, QLoRA 미세조정과 같이 모델의 메모리 사용량은 줄이고 추론 속도는 높이는 경량화 기법에 대해 알아봅니다.
8장에서는 RLHF, SFT, PPO, DPO, KTO, CPO, ORPO, Best-of-N 샘플링, 보상 모델 트레이닝 등 정렬 조정에 해당하는 최신 방법론과 이를 강화학습을 위한 트랜스포머(TRL)를 통해 활용하는 방식에 대해 알아봅니다.
이 책이 필요한 독자
- 자연어 처리 분야에서의 인공지능에 대해 알고 싶은 분
- 언어 모델을 처음 접하는 대학생 또는 대학원생
- 허깅페이스 코드를 실습해보고 싶은 자연어 처리 초보자
- 언어 모델의 구조와 다양한 태스크를 샅샅이 살펴보고 싶은 분
- 허깅페이스에 대한 이해도는 있지만, 직접 부딪혀가며 코드로 기술을 레벨업하고 싶은 분
- 경량화 기법과 강화학습을 위한 트랜스포머에 대해 궁금한 분
기본정보
ISBN | 9791165923150 |
---|---|
발행(출시)일자 | 2025년 01월 13일 |
쪽수 | 320쪽 |
크기 |
190 * 245
* 23
mm
/ 917 g
|
총권수 | 1권 |
Klover 리뷰 (6)
구매 후 리뷰 작성 시, e교환권 200원 적립
사용자 총점
67%의 구매자가
도움돼요 라고 응답했어요
집중돼요
도움돼요
쉬웠어요
최고예요
추천해요
문장수집 (1)
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)
구매 후 리뷰 작성 시, e교환권 100원 적립
-
반품/교환방법
* 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900) -
반품/교환가능 기간
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내 -
반품/교환비용
-
반품/교환 불가 사유
(단지 확인을 위한 포장 훼손은 제외)
2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
예) 화장품, 식품, 가전제품(악세서리 포함) 등
3) 복제가 가능한 상품 등의 포장을 훼손한 경우
예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등 -
상품 품절
-
소비자 피해보상 환불 지연에 따른 배상
2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함
상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)
기분 좋은 발견
이 분야의 베스트
이 분야의 신간
-
AI와 거버넌스 정치(큰글자책)10% 22,500 원
-
AI와 거버넌스 정치10% 10,800 원
-
인공지능과 성범죄(큰글자책)10% 22,500 원
-
인공지능과 성범죄10% 10,800 원
-
기계학습과 인공신경망10% 15,300 원
코드와 함께 설명 되어있는 이론 또한 핵심 위주로 쉽게 풀이 되어 있어 이해에 도움이 되었습니다. NLP 분야의 technical skills 함양을 위한 책을 찾고 계신 분들께 추천 드려요!