딥러닝 파이토치 교과서
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
로그아웃 : '서울시 종로구 종로1' 주소 기준
이달의 꽃과 함께 책을 받아보세요!
1권 구매 시 결제 단계에서 적용 가능합니다.
해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
패키지
북카드
키워드 Pick
키워드 Pick 안내
관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.
기초부터 CNN, RNN, 시계열 분석, 자연어 처리, 강화 학습, 생성 모델까지 파이토치로 구현하며 배운다!
작가정보
목차
- 1장 머신 러닝과 딥러닝
1.1 인공지능, 머신 러닝과 딥러닝
1.2 머신 러닝이란
__1.2.1 머신 러닝 학습 과정
__1.2.2 머신 러닝 학습 알고리즘
1.3 딥러닝이란
__1.3.1 딥러닝 학습 과정
__1.3.2 딥러닝 학습 알고리즘
2장 실습 환경 설정과 파이토치 기초
2.1 파이토치 개요
__2.1.1 파이토치 특징 및 장점
__2.1.2 파이토치의 아키텍처
2.2 파이토치 기초 문법
__2.2.1 텐서 다루기
__2.2.2 데이터 준비
__2.2.3 모델 정의
__2.2.4 모델의 파라미터 정의
__2.2.5 모델 훈련
__2.2.6 훈련 평가
__2.2.7 훈련 과정 모니터링
2.3 실습 환경 설정
__2.3.1 아나콘다 설치
__2.3.2 가상 환경 생성 및 파이토치 설치
2.4 파이토치 코드 맛보기
3장 머신 러닝 핵심 알고리즘
3.1 지도 학습
__3.1.1 K-최근접 이웃
__3.1.2 서포트 벡터 머신
__3.1.3 결정 트리
__3.1.4 로지스틱 회귀와 선형 회귀
3.2 비지도 학습
__3.2.1 K-평균 군집화
__3.2.2 밀도 기반 군집 분석
__3.2.3 주성분 분석(PCA)
4장 딥러닝 시작
4.1 인공 신경망의 한계와 딥러닝 출현
4.2 딥러닝 구조
__4.2.1 딥러닝 용어
__4.2.2 딥러닝 학습
__4.2.3 딥러닝의 문제점과 해결 방안
__4.2.4 딥러닝을 사용할 때 이점
4.3 딥러닝 알고리즘
__4.3.1 심층 신경망
__4.3.2 합성곱 신경망
__4.3.3 순환 신경망
__4.3.4 제한된 볼츠만 머신
__4.3.5 심층 신뢰 신경망
4.4 우리는 무엇을 배워야 할까?
5장 합성곱 신경망 I
5.1 합성곱 신경망
__5.1.1 합성곱층의 필요성
__5.1.2 합성곱 신경망 구조
__5.1.3 1D, 2D, 3D 합성곱
5.2 합성곱 신경망 맛보기
5.3 전이 학습
__5.3.1 특성 추출 기법
__5.3.2 미세 조정 기법
5.4 설명 가능한 CNN
__5.4.1 특성 맵 시각화
5.5 그래프 합성곱 네트워크
__5.5.1 그래프란
__5.5.2 그래프 신경망
__5.5.3 그래프 합성곱 네트워크
6장 합성곱 신경망 II
6.1 이미지 분류를 위한 신경망
__6.1.1 LeNet-5
__6.1.2 AlexNet
__6.1.3 VGGNet
__6.1.4 GoogLeNet
__6.1.5 ResNet
6.2 객체 인식을 위한 신경망
__6.2.1 R-CNN
__6.2.2 공간 피라미드 풀링
__6.2.3 Fast R-CNN
__6.2.4 Faster R-CNN
6.3 이미지 분할을 위한 신경망
__6.3.1 완전 합성곱 네트워크
__6.3.2 합성곱 & 역합성곱 네트워크
__6.3.3 U-Net
__6.3.4 PSPNet
__6.3.5 DeepLabv3/DeepLabv3+
7장 시계열 분석
7.1 시계열 문제
7.2 AR, MA, ARMA, ARIMA
__7.2.1 AR 모델
__7.2.2 MA 모델
__7.2.3 ARMA 모델
__7.2.4 ARIMA 모델
7.3 순환 신경망(RNN)
__7.3.1 RNN 계층과 셀
7.4 RNN 구조
__7.4.1 RNN 셀 구현
__7.4.2 RNN 계층 구현
7.5 LSTM
__7.5.1 LSTM 구조
__7.5.2 LSTM 셀 구현
__7.5.3 LSTM 계층 구현
7.6 게이트 순환 신경망(GRU)
__7.6.1 GRU 구조
__7.6.2 GRU 셀 구현
__7.6.3 GRU 계층 구현
7.7 RNN, LSTM, GRU 성능 비교
7.8 양방향 RNN
__7.8.1 양방향 RNN 구조
__7.8.2 양방향 RNN 구현
8장 성능 최적화
8.1 성능 최적화
__8.1.1 데이터를 사용한 성능 최적화
__8.1.2 알고리즘을 이용한 성능 최적화
__8.1.3 알고리즘 튜닝을 위한 성능 최적화
__8.1.4 앙상블을 이용한 성능 최적화
8.2 하드웨어를 이용한 성능 최적화
__8.2.1 CPU와 GPU 사용의 차이
__8.2.2 GPU를 이용한 성능 최적화
8.3 하이퍼파라미터를 이용한 성능 최적화
__8.3.1 배치 정규화를 이용한 성능 최적화
__8.3.2 드롭아웃을 이용한 성능 최적화
__8.3.3 조기 종료를 이용한 성능 최적화
9장 자연어 전처리
9.1 자연어 처리란
__9.1.1 자연어 처리 용어 및 과정
__9.1.2 자연어 처리를 위한 라이브러리
9.2 전처리
__9.2.1 결측치 확인
__9.2.2 토큰화
__9.2.3 불용어 제거
__9.2.4 어간 추출
__9.2.5 정규화
10장 자연어 처리를 위한 임베딩
10.1 임베딩
__10.1.1 희소 표현 기반 임베딩
__10.1.2 횟수 기반 임베딩
__10.1.3 예측 기반 임베딩
__10.1.4 횟수/예측 기반 임베딩
10.2 트랜스포머 어텐션
__10.2.1 seq2seq
__10.2.2 버트(BERT)
10.3 한국어 임베딩
11장 클러스터링
11.1 클러스터링이란
11.2 클러스터링 알고리즘 유형
__11.2.1 K-평균 군집화
__11.2.2 가우시안 혼합 모델
__11.2.3 자기 조직화 지도
12장 강화 학습
12.1 강화 학습이란
12.2 마르코프 결정 과정
__12.2.1 마르코프 프로세스
__12.2.2 마르코프 보상 프로세스
__12.2.3 마르코프 결정 과정
12.3 MDP를 위한 벨만 방정식
__12.3.1 벨만 기대 방정식
__12.3.2 벨만 최적 방정식
__12.3.3 다이나믹 프로그래밍
12.4 큐-러닝
__12.4.1 큐-러닝
__12.4.2 딥 큐-러닝
12.5 몬테카를로 트리 탐색
__12.5.1 몬테카를로 트리 탐색 원리
__12.5.2 몬테카를로 트리 검색을 적용한 틱택토 게임 구현
13장 생성 모델
13.1 생성 모델이란
__13.1.1 생성 모델 개념
__13.1.2 생성 모델의 유형
13.2 변형 오토인코더
__13.2.1 오토인코더란
__13.2.2 변형 오토인코더
13.3 적대적 생성 신경망(GAN)이란
__13.3.1 GAN 동작 원리
__13.3.2 GAN 구현
13.4 GAN 파생 기술
__13.4.1 DCGAN
__13.4.2 cGAN
__13.4.3 CycleGAN
부록
A.1 코랩
__A.1.1 코랩이란
__A.1.2 코랩에서 예제 파일 실행
A.2 캐글
__A.2.1 캐글이란
__A.2.2 캐글 시작
책 속으로
이 책은 딥러닝뿐만 아니라 파이토치(PyTorch) 입문자를 위한 책으로 다음과 같은 분들이 보면 좋습니다.
● 딥러닝과 파이토치를 처음 접하는 분
● 딥러닝에 대한 기본 지식은 있지만, 파이토치를 이용한 구현 경험은 없는 분
● 파이토치는 다룰 수 있지만, 딥러닝 지식은 없는 분
책에서는 딥러닝에 대한 이론뿐만 아니라 파이토치를 이용한 구현 방법도 함께 설명합니다. 따라서 순차적으로 매 장을 따라가면서 실습하다 보면 어렵지 않게 딥러닝과 파이토치에 익숙해질 수 있습니다. 실습할 때는 예제 코드를 내려받아 실행하는 것보다는 직접 코드를 입력하고 실습해야 좀 더 실력이 빨리 향상됩니다.
딥러닝은 범위가 방대하고, 내용을 이해하는 것도 쉽지 않습니다. 따라서 입문자들이 쉽게 접근할 수 있게 하는 데 중점을 두고 집필했습니다. 특히 딥러닝과 파이토치를 처음 접하는 분들이 어려워서 포기하지 않도록 처음부터 끝까지 난이도를 조절하는 데 중점을 두었습니다.
1~4장은 머신 러닝과 딥러닝에 대한 기본적인 내용뿐만 아니라 파이토치 실습을 위한 환경 설정 방법을 다룹니다.
5~11장은 딥러닝의 핵심적인 신경망을 배웁니다. 합성곱 신경망, 순환 신경망 및 자연어 처리와 관련된 다양한 신경망을 다룹니다. 또한, 모델 성능을 향상시킬 수 있는 방법도 알아봅니다.
12~13장은 강화 학습과 생성 모델을 배웁니다.
책 한 권에 딥러닝 전체를 아우를 수 있는 내용을 담으려고 노력하다 보니 신경망별로 깊이 있는 내용은 부족합니다. 대략적인 개요를 익힌 후 개별적인 신경망에 대해 깊이 있게 학습하려면 많은 논문을 살펴보는 것이 좋습니다. 논문에서 딥러닝 관련 지식이나 신경망이 어떻게 발전되고 있는지 흐름을 살펴볼 수 있습니다. 특히 신러닝국제학회(International Conference on Machine Learning, ICML)와 표현학습국제학회(International Conference on Learning Representations, ICLR)에서 발표되는 논문들을 눈여겨보면 좋습니다.
더불어 파이토치에 대한 꾸준한 관심도 필요합니다. 이 책을 집필하는 동안에도 파이토치 버전이 업그레이드되어 많은 부분을 수정했을 정도로 기술이 빠르게 변화하고 있습니다. 파이토치의 새로운 버전 관련 내용은 https://pytorch.org/tutorials에서 지속적으로 확인하면 좋습니다. 또한, 딥러닝을 실무에 적용해 보기 위해서는 논문의 내용을 파이토치로 구현해 보는 연습을 해야 합니다. 물론 처음에는 어려울 수 있습니다. 하지만 책 내용을 완전히 숙지한 후 파이토치 코드가 제공되는 논문들을 찾아서 연습하고 제공되지 않는 논문들은 직접 코드로 구현해 보는 단계적 노력이 필요합니다.
이 책이 여러분이 딥러닝 세계에 입문하는 데 도움이 되면 더 바랄 것이 없을 것 같습니다.
-지은이의 말 중에서-
기본정보
ISBN | 9791165218942 |
---|---|
발행(출시)일자 | 2022년 03월 05일 (1쇄 2022년 03월 04일) |
쪽수 | 760쪽 |
크기 |
184 * 236
* 35
mm
/ 1338 g
|
총권수 | 1권 |
Klover
구매 후 리뷰 작성 시, e교환권 200원 적립
문장수집 (4)
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)
구매 후 리뷰 작성 시, e교환권 100원 적립