본문 바로가기

추천 검색어

실시간 인기 검색어

파이썬 데이터 클리닝 쿡북

파이썬과 판다스를 활용한 데이터 전처리
위키북스 데이터 사이언스 시리즈 74
마이클 워커 저자(글) · 최용 번역
위키북스 · 2021년 11월 19일
10.0
10점 중 10점
(1개의 리뷰)
추천해요 (100%의 구매자)
  • 파이썬 데이터 클리닝 쿡북 대표 이미지
    파이썬 데이터 클리닝 쿡북 대표 이미지
  • A4
    사이즈 비교
    210x297
    파이썬 데이터 클리닝 쿡북 사이즈 비교 191x242
    단위 : mm
01 / 02
MD의 선택 무료배송 이벤트 소득공제
10% 25,200 28,000
적립/혜택
1,400P

기본적립

5% 적립 1,400P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,400P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서 포함 15,000원 이상 구매 시 무료배송
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
주문정보를 불러오는 중입니다.
기본배송지 기준
배송일자 기준 안내
로그인 : 회원정보에 등록된 기본배송지
로그아웃 : '서울시 종로구 종로1' 주소 기준
로그인정확한 배송 안내를 받아보세요!

이달의 꽃과 함께 책을 받아보세요!

1권 구매 시 결제 단계에서 적용 가능합니다.

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

데이터로부터 통찰을 얻으려면 데이터를 정제해야 한다. 데이터를 적절히 정제하지 않고 곧바로 분석에 들어갔다가는 잘못된 결과를 얻게 될 수 있기 때문이다. 《파이썬 데이터 클리닝 쿡북》은 파이썬으로 데이터를 다루고 정제할 때 사용할 수 있는 도구와 기법을 보여준다.

먼저 통상적인 데이터 소스로부터 데이터를 얻고 형태를 확인하는 일상적인 작업을 하는 법을 보여준다. 그런 다음, 데이터를 유용한 형태로 바꾸는 법을 가르친다. 원하는 데이터를 골라내고 요약함으로써 통찰을 얻는 법, 도출된 문제점을 해결하는 법도 알려준다. 이어서 누락값 처리, 오류 검사, 중복 데이터 제거, 이상값과 날짜를 다루는 법으로 진행한다. 지도학습으로 예상치 못한 값과 분류 오류를 식별하고, 탐색적 데이터 분석(EDA)을 위한 시각화를 통해 예상치 못한 값을 식별한다. 끝으로, 새로운 데이터에 대해서도 수정 없이 재사용할 수 있는 함수와 클래스를 작성한다.

이 책을 마친 후에는 데이터를 정제하고 문제를 진단하는 주요 기술을 갖게 될 것이다.

* 이 책에서 다루는 내용 *
◎ 다양한 데이터 소스로부터 데이터를 읽고 분석하는 법
◎ 데이터프레임, 열, 행의 어트리뷰트를 요약하는 법
◎ 데이터를 필터링하고 주어진 요건을 충족하는 열을 선택
◎ 날짜, 누락값이 있는 데이터 등 지저분한 데이터를 다루기
◎ 메서드 체이닝으로 파이썬 판다스 작업 생산성을 향상
◎ 시각화를 통해 통찰을 얻고 잠재적인 데이터 이슈를 식별
◎ 데이터의 변동을 파악하는 능력을 향상
◎ 사용자 정의 함수 및 클래스를 작성해 데이터 정제를 자동화

작가정보

저자(글) 마이클 워커

30년 이상 여러 교육기관에서 데이터 분석가로 일했다. 또한 2006년부터 대학에서 데이터 과학, 연구 방법, 통계, 컴퓨터 프로그래밍을 가르쳤다. 그는 공공 부문 및 재단의 보고서를 생산하며 학술지에 게재할 자료를 분석한다.

번역 최용

한국방송통신대학교에서 컴퓨터 과학을 전공하고 2000년대 초부터 IT 업계에서 일했다. 은행의 일괄 작업 운영과 서버 운영 자동화를 돕는 외산 소프트웨어의 기술 지원 업무를 주로 했고, 현재는 위키북스에서 교정 업무를 하고 있다.
저서로 《왕초보를 위한 파이썬》(사이버출판사, 2002), 《예제 중심의 파이썬》(인피니티북스) 등이 있으며, 《파이썬으로 배우는 데이터 과학 입문과 실습》(위키북스), 《익스플로링 라즈베리 파이》(위키북스), 《침투 본능, 해커의 기술》(위키북스), 《웹 애플리케이션 보안》(한빛미디어) 등을 번역했다.

목차

  • ▣ 01장: 표 데이터를 판다스로 가져올 때의 데이터 정제
    ___1.1 CSV 파일 가져오기
    ___1.2 엑셀 파일 가져오기
    ___1.3 SQL 데이터베이스의 데이터를 가져오기
    ___1.4 SPSS, Stata, SAS 데이터 가져오기
    ___1.5 R 데이터 가져오기
    ___1.6 표 데이터 저장

    ▣ 02장: HTML과 JSON을 판다스로 가져올 때의 데이터 정제
    ___2.1 단순한 JSON 데이터 가져오기
    ___2.2 API를 통해 복잡한 JSON 데이터 가져오기
    ___2.3 웹페이지의 데이터 가져오기
    ___2.4 JSON 데이터 저장

    ▣ 03장: 데이터 측정
    ___3.1 처음 데이터를 훑어보기
    ___3.2 열을 선택하고 정돈하기
    ___3.3 행을 선택하기
    ___3.4 범주형변수의 빈도를 생성하기
    ___3.5 연속변수의 요약통계 생성하기

    ▣ 04장: 데이터의 부분집합에서 누락값과 이상값 식별
    ___4.1 누락값 찾기
    ___4.2 변수가 1개인 이상값 식별하기
    ___4.3 이변량 관계의 이상값과 예상치 못한 값 식별하기
    ___4.4 부분집합을 이용해 변수 간의 논리적 불일치를 찾기
    ___4.5 선형 회귀를 활용해 유의한 영향을
    ___4.6 k-최근접 이웃을 활용해 이상값을 찾기
    ___4.7 아이솔레이션 포레스트를 활용한 이상 탐지

    ▣ 05장: 시각화를 활용해 예상치 못한 값을 식별하기
    ___5.1 히스토그램을 활용해 연속변수의 분포를 조사하기
    ___5.2 박스플롯을 활용해 연속변수의 이상값을 식별하기
    ___5.3 그룹별 박스플롯으로 특정 그룹에서 예상치 못한 값을 드러내기
    ___5.4 바이올린 플롯으로 분포 형태와 이상값을 조사하기
    ___5.5 산점도를 활용해 이변량 관계를 보기
    ___5.6 라인 플롯으로 연속변수의 추세를 조사하기
    ___5.7 상관행렬을 기반으로 히트맵을 작성하기

    ▣ 06장: 데이터 정제, 탐색 및 시리즈 연산
    ___6.1 판다스 시리즈에서 값을 얻기
    ___6.2 판다스 시리즈에 대한 요약통계 표시
    ___6.3 시리즈 값 변경
    ___6.4 조건에 따라 시리즈 값을 변경
    ___6.5 문자열 시리즈 데이터 평가와 정제
    ___6.6 날짜 다루기
    ___6.7 누락 데이터 식별과 정제
    ___6.8 k-최근접 이웃으로 누락값 대치

    ▣ 07장: 집계 시 지저분한 데이터 다루기
    ___7.1 itertuples을 활용한 데이터 순회(안티 패턴)
    ___7.2 넘파이 배열의 그룹별 요약을 계산
    ___7.3 groupby를 사용해 데이터를 그룹별로 조직화하기
    ___7.4 좀 더 복잡한 집계 함수를 groupby와 함께 사용하기
    ___7.5 사용자 정의 함수 및 apply와 groupby
    ___7.6 groupby를 사용해 데이터프레임의 분석 단위를 바꾸기

    ▣ 08장: 데이터프레임들을 결합할 때의 데이터 문제 해결
    ___8.1 데이터프레임을 수직으로 결합하기
    ___8.2 일대일 병합
    ___8.3 병합 기준 열을 여러 개 사용하기
    ___8.4 일대다 병합
    ___8.5 다대다 병합
    ___8.6 병합 루틴 개발

    ▣ 09장: 데이터 타이딩과 리셰이핑
    ___9.1 중복 행 제거하기
    ___9.2 다대다 관계 수정하기
    ___9.3 stack과 melt로 넓은 데이터를 긴 포맷으로 리셰이핑
    ___9.4 열 그룹을 녹이기
    ___9.5 unstack과 pivot을

    ▣ 10장: 사용자 정의 함수와 클래스로 데이터 정제를 자동화
    ___10.1 데이터를 처음 살펴보는 함수
    ___10.2 요약통계와 빈도를 표시하는 함수
    ___10.3 이상치와 예상치 못한 값을 식별하는 함수
    ___10.4 데이터 집계와 결합을 위한 함수
    ___10.5 시리즈 값을 업데이트하는 로직을 담은 클래스
    ___10.6 표 형태가 아닌 데이터 구조를 다루는 클래스

기본정보

상품정보 테이블로 ISBN, 발행(출시)일자 , 쪽수, 크기, 총권수, 시리즈명, 원서(번역서)명/저자명을(를) 나타낸 표입니다.
ISBN 9791158392789
발행(출시)일자 2021년 11월 19일
쪽수 388쪽
크기
191 * 242 * 19 mm / 771 g
총권수 1권
시리즈명
위키북스 데이터 사이언스 시리즈
원서(번역서)명/저자명 Python Data Cleaning Cookbook/Walker, Michael

Klover

구매 후 리뷰 작성 시, e교환권 200원 적립

데이터를 불러오는 중입니다.

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

TOP