기초부터 다지는 통계학 교과서 with 파이썬
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
로그아웃 : '서울시 종로구 종로1' 주소 기준
이달의 꽃과 함께 책을 받아보세요!
1권 구매 시 결제 단계에서 적용 가능합니다.
해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
패키지
북카드
키워드 Pick
키워드 Pick 안내
관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.
전 세계 주요 대학이 사용하는 통계학 기본서
2013년에 쓰인 이 책의 전신인 R 버전은 베스트셀러 반열에 오른 도서로, 전 세계 유수 대학의 데이터과학, 통계학, 컴퓨터학과의 핵심 교재로 사용되고 있습니다. 그러나 최근 파이썬이 데이터과학 분야의 핵심 언어로 등장하면서 이를 반영한 도서에 대한 요구가 높아졌습니다. 이 책은 기존 실습 예제를 파이썬으로 구현함과 동시에 최신 통계 기법의 하나인 딥러닝을 추가해 새롭게 출시되었습니다.
작가정보
현재 워싱턴대학교의 통계학 및 생물통계학과 교수다. 비지도학습을 중심으로 고차원 데이터를 위한 통계적 기계학습 방법을 연구하고 있다. 통계적 기계학습 분야 연구로 여러 번 수상했고 2023년부터 왕립통계학회지 B계열(Journal of the Royal Statistical Society, Series B)의 공동 편집장을 맡고 있다.
스탠퍼드대학교 통계학과와 의과대학 생물의학데이터과학과 교수다. 2018년에는 미국국립과학원 회원으로 선출되었다. 200편 이상의 논문을 발표하고 6권의 저서를 집필했으며 특히 통계적 학습 이론에 큰 기여를 하고 있다.
스탠퍼드대학교 통계학과와 생물의학데이터과학과 교수다. 주 연구 분야는 통계적 학습, 데이터 마이닝, 통계계산, 생물정보학 등으로 약 250편의 논문을 저술했다. ISI Web of Knowledge에서 선정한 수학 분야에서 가장 많이 인용되고 있는 저자(ISI Highly Cited Authors in Mathematics) 중 한 명이다.
스탠퍼드대학교 통계학과 교수다. 주 연구 분야는 가우시안 과정(Gaussian processes), 확률 과정(stochastic processes), 미분기하학적 방법(differential geometric methods) 등이다.
국어학을 전공하고 (주)사이오닉에이아이에서 '리서치/정책총괄' 업무를 맡고 있다. 전산언어학과 상식 추론, 언어 유형론에 관심이 많다. 사람 언어와 기계 언어 간에 장벽을 줄이는 데 벽을 허물고 길을 내는 사람이 되려 하며, 그 일환으로 《모두의 한국어 텍스트 분석 with 파이썬》과 같은 책을 쓰거나 《파이썬을 활용한 딥러닝 전이학습》 책의 번역에 참여했다.
목차
- 1장 도입
2장 통계적 학습
2.1 통계적 학습이란 무엇인가?
2.2 모형의 정확도 평가
2.3 실습: 파이썬 기초
2.4 연습문제
3장 선형회귀
3.1 단순선형회귀
3.2 다중선형회귀
3.3 회귀모형에서 생각할 다른 문제들
3.4 마케팅 계획
3.5 선형회귀와 K-최근접이웃의 비교
3.6 실습: 선형회귀
3.7 연습문제
4장 분류
4.1 분류의 개요
4.2 왜 선형회귀를 사용하지 않는가
4.3 로지스틱 회귀
4.4 생성모형을 이용한 분류
4.5 분류 방법 비교
4.6 일반화선형모형
4.7 실습: 로지스틱 회귀, LDA, QDA, KNN
4.8 연습문제
5장 재표집법
5.1 교차검증
5.2 부트스트랩
5.3 실습: 교차검증과 부트스트랩
5.4 연습문제
6장 선형모형선택과 규제
6.1 부분집합선택
6.2 축소 방법
6.3 차원축소법
6.4 고차원에서 생각할 점
6.5 실습: 선형모형과 규제 방법들
6.6 연습문제
7장 선형을 넘어서
7.1 다항회귀
7.2 계단함수
7.3 기저함수
7.4 회귀 스플라인
7.5 평활 스플라인
7.6 국소회귀
7.7 일반화가법모형
7.8 실습: 비선형모형
7.9 연습문제
8장 나무-기반의 방법
8.1 의사결정나무의 기초
8.2 배깅, 랜덤 포레스트, 부스팅 및 베이즈 가법회귀나무
8.3 실습: 나무-기반의 방법
8.4 연습문제
9장 서포트 벡터 머신
9.1 최대 마진 분류기
9.2 서포트 벡터 분류기
9.3 서포트 벡터 머신
9.4 2개 이상의 부류가 있는 SVM
9.5 로지스틱 회귀와의 관련성
9.6 실습: 서포트 벡터 머신
9.7 연습문제
10장 딥러닝
10.1 단층 신경망
10.2 다층 신경망
10.3 합성곱 신경망
10.4 문서 분류
10.5 순환 신경망
10.6 딥러닝을 사용할 때
10.7 신경망 적합
10.8 보간과 이중 하강
10.9 실습: 딥러닝
10.10 연습문제
11장 생존분석과 중도절단자료
11.1 생존시간과 중도절단시간
11.2 중도절단 좀 더 자세히 살펴보기
11.3 카플란-마이어 생존곡선
11.4 로그 순위검정
11.5 생존분석 회귀모형
11.6 콕스 모형을 위한 축소
11.7 추가 주제
11.8 실습: 생존분석
11.9 연습문제
12장 비지도학습
12.1 비지도학습의 도전
12.2 주성분분석
12.3 결측값 및 행렬 완성
12.4 군집화 방법
12.5 실습: 비지도학습
12.6 연습문제
13장 다중검정
13.1 가설검정에 대한 간략한 재검토
13.2 다중검정의 어려움
13.3 집단별 오류율
13.4 거짓발견율
13.5 재표집법을 통한 p-값과 거짓발견율
13.6 실습: 다중검정
13.7 연습문제
책 속으로
“이 책은 통계학이나 관련 계량 분야를 전공하는 고급 학부생이나 석사 과정 학생 또는 자신의 데이터를 분석하기 위해 통계적 학습 도구를 사용하려는 다른 분야의 개인에게 적합하다.”(xiv쪽)
“통계적 학습'이란 '데이터를 이해하기' 위한 방대한 도구의 모음을 뜻한다.”(1쪽)
“이후 통계적 학습의 중요한 기법들을 파이썬으로 구현하려는 요구가 증가해 왔다. 이에 따라 이번 책에서는 실습 예제를 R에서 파이썬으로 변경했다.”(9쪽)
“각 장 마지막에는 하나 이상의 파이썬 실습을 제시해, 해당 장에서 논의된 여러 방법의 응용 프로그램을 체계적으로 살펴볼 예정이다. 이 실습들은 다양한 접근법의 장단점을 보여 줄 뿐만 아니라, 다양한 방법을 구현할 때 필요한 구문에 대한 유용한 참고 자료를 제공한다.”(14쪽)
기본정보
ISBN | 9788966264629 | ||
---|---|---|---|
발행(출시)일자 | 2024년 12월 18일 | ||
쪽수 | 760쪽 | ||
크기 |
187 * 240
* 45
mm
/ 1499 g
|
||
총권수 | 1권 | ||
원서(번역서)명/저자명 | An Introduction to Statistical Learning/James, Gareth |
Klover
구매 후 리뷰 작성 시, e교환권 200원 적립
문장수집
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)
구매 후 리뷰 작성 시, e교환권 100원 적립