본문 바로가기

추천 검색어

실시간 인기 검색어

트랜스포머를 활용한 자연어 처리

허깅페이스 개발팀이 알려주는 자연어 애플리케이션 구축
한빛미디어 · 2022년 11월 30일
10.0 (4개의 리뷰)
도움돼요 (100%의 구매자)
  • 트랜스포머를 활용한 자연어 처리 대표 이미지
    트랜스포머를 활용한 자연어 처리 대표 이미지
  • A4
    사이즈 비교
    210x297
    180x234
    단위 : mm
MD의 선택 무료배송 이벤트 소득공제
10% 35,100 39,000
적립/혜택
1,950P

기본적립

5% 적립 1,950P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,950P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서 / 외국도서
도서만 1만 원 이상 구매 시 무료배송
도서 + 잡지 / 만화 / :K컬렉션을 함께 1만 원 이상 구매 시 무료배송

1만원 미만 시 2,000원 배송비 부과

잡지 / 만화 / :K컬렉션 (교보배송)
각각 구매하거나 함께 2만 원 이상 구매 시 무료배송

2만원 미만 시 2,000원 배송비 부과

해외주문 서양도서 / 해외주문 일본도서 (교보배송)
각각 구매하거나 함께 1만 원 이상 구매 시 무료배송

1만원 미만 시 2,000원 배송비 부과

업체배송 상품 (전집, GIFT, 음반 / DVD 등)
중고장터 상품
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
주문정보를 불러오는 중입니다.
서울시 종로구 종로 1

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

패키지

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

트랜스포머를 활용한 자연어 처리 상세 이미지
자연어를 찰떡같이 알아듣는 트랜스포머 완벽 해부하기
트랜스포머는 우리 주변에 가득하다! 트랜스포머 아키텍처는 순식간에 자연어 처리 분야를 지배했다. 기자처럼 뉴스를 작성하고, 프로그래머의 코드를 자동 완성하며, 사람들이 원하는 그림을 그려내고 있다. 이 책은 데이터 과학자나 프로그래머가 트랜스포머 모델을 훈련하고 확장할 수 있도록 허깅페이스(🤗)의 트랜스포머스 라이브러리를 활용하는 실용적인 방법을 안내한다. 허깅페이스에서 트랜스포머스 라이브러리를 개발한 엔지니어들이 직접 예제 코드를 설명하며 트랜스포머의 작동 원리와 이를 사용한 문제 해결법, 실제 애플리케이션 도입법까지 차근차근 소개한다. 나만의 트랜스포머를 훈련시키는 방법을 배우고 자연어 처리를 정복해보자.

작가정보

저자(글) 루이스 턴스톨

(Lewis Tunstall)
허깅페이스의 머신러닝 엔지니어입니다. 스타트업과 기업을 위해 NLP, 위상 기반 데이터 분석(topological data analysis), 시계열 분야의 머신러닝 애플리케이션을 만들었습니다. 이론 물리학으로 박사 학위를 받고 호주, 미국, 스위스에서 연구를 수행했습니다. 현재는 NLP 커뮤니티를 위한 도구를 개발하며 이를 효율적으로 사용하는 방법을 가르치는 일에 열중합니다.

저자(글) 레안드로 폰 베라

(Leandro von Werra)
허깅페이스 오픈소스 팀의 머신러닝 엔지니어입니다. 산업 분야에서 NLP 프로젝트를 제품화하는 데 머신러닝 스택 전반에 걸쳐 다년의 경험을 쌓았으며, 트랜스포머와 강화 학습을 결합해 인기 있는 파이썬 라이브러리 TRL을 만들었습니다.

저자(글) 토마스 울프

(Thomas Wolf)
허깅페이스의 최고 과학 책임자이자 공동 설립자입니다. 그가 이끄는 팀은 NLP 연구를 촉진하고 민주화하는 임무를 수행합니다. 허깅페이스를 공동 설립하기 전에 물리학 박사 학위를 취득하고 나중에 법학 학위를 받았습니다. 한때 물리학 연구원과 유럽 변리사로 일했습니다.

번역 박해선

기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. 텐서 플로우 블로그(tensorflow.blog)를 운영하고, 머신러닝과 딥러닝을 주제로 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.
『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했습니다.
『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『(개정2판)파이썬 라이브러리를 활용한 머신러닝』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『머신 러닝 교과서 3판』(길벗, 2021), 『딥러닝 일러스트레이티드』(시그마프레스, 2021), 『GAN 인 액션』(한빛미디어, 2020), 『핸즈온 머신러닝 2판』(한빛미디어, 2020), 『미술관에 GAN 딥러닝 실전 프로젝트』(한빛미디어, 2019), 『파이썬을 활용한 머신러닝 쿡북』(한빛미디어, 2019) 등 여러 권의 책을 우리말로 옮겼습니다.

목차

  • CHAPTER 1 트랜스포머 소개
    _1.1 인코더-디코더 프레임워크
    _1.2 어텐션 메커니즘
    _1.3 NLP의 전이 학습
    _1.4 허깅페이스 트랜스포머스
    _1.5 트랜스포머 애플리케이션 둘러보기
    __1.5.1 텍스트 분류
    __1.5.2 개체명 인식
    __1.5.3 질문 답변
    __1.5.4 요약
    __1.5.5 번역
    __1.5.6 텍스트 생성
    _1.6 허깅페이스 생태계
    __1.6.1 허깅페이스 허브
    __1.6.2 허깅페이스 토크나이저
    __1.6.3 허깅페이스 데이터셋
    __1.6.4 허깅페이스 액셀러레이트
    _1.7 트랜스포머의 주요 도전 과제
    _1.8 결론

    CHAPTER 2 텍스트 분류
    _2.1 데이터셋
    __2.1.1 허깅페이스 데이터셋 처음 사용하기
    __2.1.2 데이터셋에서 데이터프레임으로
    __2.1.3 클래스 분포 살펴보기
    __2.1.4 트윗 길이 확인
    _2.2 텍스트에서 토큰으로
    __2.2.1 문자 토큰화
    __2.2.2 단어 토큰화
    __2.2.3 부분단어 토큰화
    __2.2.4 전체 데이터셋 토큰화하기
    _2.3 텍스트 분류 모델 훈련하기
    __2.3.1 트랜스포머를 특성 추출기로 사용하기
    __2.3.2 트랜스포머 미세 튜닝하기
    _2.4 결론

    CHAPTER 3 트랜스포머 파헤치기
    _3.1 트랜스포머 아키텍처
    _3.2 인코더
    __3.2.1 셀프 어텐션
    __3.2.2 피드 포워드 층
    __3.2.3 층 정규화 추가하기
    __3.2.4 위치 임베딩
    __3.2.5 분류 헤드 추가하기
    _3.3 디코더
    _3.4 트랜스포머 유니버스
    __3.4.1 트랜스포머 가계도
    __3.4.2 인코더 유형
    __3.4.3 디코더 유형
    __3.4.4 인코더-디코더 유형
    _3.5 결론

    CHAPTER 4 다중 언어 개체명 인식
    _4.1 데이터셋
    _4.2 다중 언어 트랜스포머
    _4.3 XLM-R 토큰화
    __4.3.1 토큰화 파이프라인
    __4.3.2 SentencePiece 토크나이저
    _4.4 개체명 인식을 위한 트랜스포머
    _4.5 트랜스포머 모델 클래스
    __4.5.1 바디와 헤드
    __4.5.2 토큰 분류를 위한 사용자 정의 모델 만들기
    __4.5.3 사용자 정의 모델 로드하기
    _4.6 NER 작업을 위해 텍스트 토큰화하기
    _4.7 성능 측정
    _4.8 XLM-RoBERTa 미세 튜닝하기
    _4.9 오류 분석
    _4.10 교차 언어 전이
    __4.10.1 제로 샷 전이가 유용할 때
    __4.10.2 다국어에서 동시에 미세 튜닝하기
    _4.11 모델 위젯 사용하기
    _4.12 결론

    CHAPTER 5 텍스트 생성
    _5.1 일관성 있는 텍스트 생성의 어려움
    _5.2 그리디 서치 디코딩
    _5.3 빔 서치 디코딩
    _5.4 샘플링 방법
    _5.5 탑-k 및 뉴클리어스 샘플링
    _5.6 어떤 디코딩 방법이 최선일까요?
    _5.7 결론

    CHAPTER 6 요약
    _6.1 CNN/DailyMail 데이터셋
    _6.2 텍스트 요약 파이프라인
    __6.2.1 요약 기준 모델
    __6.2.2 GPT-2
    __6.2.3 T5
    __6.2.4 BART
    __6.2.5 PEGASUS
    _6.3 요약 결과 비교하기
    _6.4 생성된 텍스트 품질 평가하기
    __6.4.1 BLEU
    __6.4.2 ROUGE
    _6.5 CNN/DailyMail 데이터셋에서 PEGASUS 평가하기
    _6.6 요약 모델 훈련하기
    __6.6.1 SAMSum에서 PEGASUS 평가하기
    __6.6.2 PEGASUS 미세 튜닝하기
    __6.6.3 대화 요약 생성하기
    _6.7 결론

    CHAPTER 7 질문 답변
    _7.1 리뷰 기반 QA 시스템 구축하기
    __7.1.1 데이터셋
    __7.1.2 텍스트에서 답 추출하기
    __7.1.3 헤이스택을 사용해 QA 파이프라인 구축하기
    _7.2 QA 파이프라인 개선하기
    __7.2.1 리트리버 평가하기
    __7.2.2 리더 평가하기
    __7.2.3 도메인 적응
    __7.2.4 전체 QA 파이프라인 평가하기
    _7.3 추출적 QA를 넘어서
    _7.4 결론

    CHAPTER 8 효율적인 트랜스포머 구축
    _8.1 의도 탐지 예제
    _8.2 벤치마크 클래스 만들기
    _8.3 지식 정제로 모델 크기 줄이기
    __8.3.1 미세 튜닝에서의 지식 정제
    __8.3.2 사전 훈련에서의 지식 정제
    __8.3.3 지식 정제 트레이너 만들기
    __8.3.4 좋은 스튜던트 선택하기
    __8.3.5 옵투나로 좋은 하이퍼파라미터 찾기
    __8.3.6 정제 모델 벤치마크 수행하기
    _8.4 양자화로 모델 속도 높이기
    _8.5 양자화된 모델의 벤치마크 수행하기
    _8.6 ONNX와 ONNX 런타임으로 추론 최적화하기
    _8.7 가중치 가지치기로 희소한 모델 만들기
    __8.7.1 심층 신경망의 희소성
    __8.7.2 가중치 가지치기 방법
    _8.8 결론

    CHAPTER 9 레이블 부족 문제 다루기
    _9.1 깃허브 이슈 태거 만들기
    __9.1.1 데이터 다운로드하기
    __9.1.2 데이터 준비하기
    __9.1.3 훈련 세트 만들기
    __9.1.4 훈련 슬라이스 만들기
    _9.2 나이브 베이즈 모델 만들기
    _9.3 레이블링된 데이터가 없는 경우
    _9.4 레이블링된 데이터가 적은 경우
    __9.4.1 데이터 증식
    __9.4.2 임베딩을 룩업 테이블로 사용하기
    __9.4.3 기본 트랜스포머 미세 튜닝하기
    __9.4.4 프롬프트를 사용한 인-컨텍스트 학습과 퓨-샷 학습
    _9.5 레이블링되지 않은 데이터 활용하기
    __9.5.1 언어 모델 미세 튜닝하기
    __9.5.2 분류기 미세 튜닝하기
    __9.5.3 고급 방법
    _9.6 결론

    CHAPTER 10 대규모 데이터셋 수집하기
    _10.1 대규모 데이터셋 수집하기
    __10.1.1 대규모 말뭉치 구축의 어려움
    __10.1.2 사용자 정의 코드 데이터셋 만들기
    __10.1.3 대용량 데이터셋 다루기
    __10.1.4 허깅페이스 허브에 데이터셋 추가하기
    _10.2 토크나이저 구축하기
    __10.2.1 토크나이저 모델
    __10.2.2 토크나이저 성능 측정하기
    __10.2.3 파이썬 코드를 위한 토크나이저
    __10.2.4 토크나이저 훈련하기
    __10.2.5 허브에 사용자 정의 토크나이저 저장하기
    _10.3 밑바닥부터 모델을 훈련하기
    __10.3.1 사전 훈련 목표
    __10.3.2 모델 초기화
    __10.3.3 데이터로더 구축하기
    __10.3.4 훈련 루프 정의하기
    __10.3.5 훈련 실행
    _10.4 결과 및 분석
    _10.5 결론

    CHAPTER 11 향후 방향
    _11.1 트랜스포머 확장
    __11.1.1 규모의 법칙
    __11.1.2 규모 확장의 어려움
    __11.1.3 어텐션 플리즈!
    __11.1.4 희소 어텐션
    __11.1.5 선형 어텐션
    _11.2 텍스트를 넘어서
    __11.2.1 비전
    __11.2.2 테이블
    _11.3 멀티모달 트랜스포머
    __11.3.1 스피치-투-텍스트
    __11.3.2 비전과 텍스트
    _11.4 다음 목적지는?

추천사

  • 인공지능의 놀라운 가능성은 트랜스포머 구조의 등장으로 다시 한번 재조명되었습니다. 그리고 🤗가 구축한 오픈소스 생태계는 트랜스포머 구조를 근간으로 한 다양한 머신러닝 모델과 이를 훈련하기 위한 환경의 사실상 산업 표준으로 자리잡았습니다. 더불어 자연어를 넘어, 이제는 비전, 오디오, 정형 다양한 분야에서 활용되고 있으며, 🤗에서도 이런 변화를 적극적으로 수용하고 있습니다. 또한 🤗는 인공지능 민주화를 목표로 오픈소스 생태계를 빠르게 구축, 확장하여 다양한 산업이 인공지능의 혜택을 누리게 하는 데 집중하고 있습니다. 이 책을 통해 인공지능의 혁신이 일어나는 🤗의 철학과, 미려하게 설계된 다양한 라이브러리의 API를 확인하고, 실제 작동하는 애플리케이션까지 모두 한눈에 확인하는 기회를 얻어가기를 바랍니다.

  • 트랜스포머는 딥러닝 중 가장 중요한 모델들 중 하나이고, 허깅페이스는 이 트랜스포머를 쉽게 사용할 수 있도록 해줍니다. 이 두 가지는 딥러닝 관련 업무를 한다면 반드시 잘 알아야 하는 부분인데 박해선 님이 번역한 이 책을 통해 쉽게 이해할 수 있습니다. 특히 간략한 소개 후 2장에서 바로 텍스트 분류를 통한 핸즈온을 진행해 트랜스포머와 허깅페이스를 어떻게 사용하는지 이해할 수 있고, 이어지는 딥 다이브와 다국어 개체명 인식, 텍스트 생성과 요약, QA 등 많이 사용하는 NLP 문제는 깊은 지식을 전달합니다. 무엇보다도 박해선 님의 번역 문체는 심플하면서도 이해하기 쉬워서 읽는 내내 즐거웠습니다. 올해 딥러닝 기술 관련 한 권의 책을 추천한다면 바로 이 책을 주저없이 추천할 것입니다.

  • 트랜스포머는 현재 딥러닝 산학계를 휩쓸고 있는 가장 중요한 아키텍처입니다. 특히 자연어 처리에서는 피해 갈 수 없는 존재입니다. 이 책은 이렇게 중요한 트랜스포머를 자연어 처리에서 활용하는 방법을 다양한 태스크를 통해 자세히 다룹니다. 또한 자연어 처리에서 점점 표준이 되어가는 허깅페이스를 활용하므로, 실전에서의 활용도도 더욱 증대될 것입니다. 마지막으로 역자의 많은 딥러닝 분야 서적 집필 및 번역 경험에서 우러나오는 전달 방식은 원서 저자의 의도를 독자들에게 충분히 잘 전달해줍니다. 이 책을 통해 독자들은 자연어 처리 분야에서 트랜스포머를 활용하여 실전 능력을 키울 수 있을 것입니다.

  • 최신 NLP에 필수인 트랜스포머스 라이브러리를 놀랍도록 명확하고 예리하게 설명하는 가이드입니다. 추천합니다!

  • 사전 훈련된 트랜스포머 언어 모델은 NLP 세상에 폭풍을 몰고왔습니다. 트랜스포머스 같은 라이브러리는 이런 모델을 손쉽게 사용하도록 해줍니다. 최근 NLP의 성과를 활용할 방법을, 이 라이브러리를 만든 사람보다 더 잘 설명할 사람이 있을까요? 『트랜스포머를 활용한 자연어 처리』는 저자들이 오랜 연구와 엔지니어링에서 축적한 지식을 모은 역작입니다. 상당히 폭넓고 깊은 통찰력을 제공하며 최신 연구와 실전 애플리케이션을 절묘하게 융합한 보기 드문 책입니다. 또 다국어부터 효율적인 모델 개발까지, 질문 답변부터 텍스트 생성까지 현재 NLP에서 가장 주요한 방법과 애플리케이션에 대한 정보를 담았습니다. 각 장은 실전 고려사항과 모범 사례를 강조하고, 연구 기반 모델을 실전에 활용할 수 있게 풍부한 예제 코드를 바탕으로 설명합니다. NLP를 처음 배우는 사람이든 베테랑이든 누구나 이 책을 통해 분야 이해도를 높이고 최첨단 모델을 빠르게 개발하고 배포할 수 있을 것입니다.

  • 트랜스포머는 NLP 작업을 변화시켰으며 허깅페이스는 트랜스포머를 제품과 연구에 활용하는 방법을 개척했습니다. 시의적절하게도 허깅페이스의 루이스 턴스톨Lewis Tunstall, 레안드로 폰 베라Leandro von Werra, 토마스 울프Thomas Wolf는 이 중요한 주제를 편리하고 실용적으로 소개하는 책을 썼습니다. 이 책은 트랜스포머 메커니즘의 개념을 기초부터 자세히 설명하고, 다양한 트랜스포머 모델과 트랜스포머 애플리케이션을 소개하고, 트랜스포머를 훈련하고 제품에 투입할 때 발생할 수 있는 실전 문제를 소개합니다. 이 책을 읽어보니 내용의 깊이와 명쾌한 그림 덕분에 트랜스포머, 특히 자연어 처리를 배우려는 모든 사람에게 최고의 자료가 되리라 확신합니다.

  • 복잡한 것이 단순해졌습니다. 이 책은 NLP, 트랜스포머와 이를 둘러싼 생태계를 다룬 보기 드문 귀중한 책입니다. 그저 유행어로 알고 있든, 이미 확실한 내용을 모두 알고 있든 관계없이 저자들은 유머와 과학적 엄격함, 풍부한 예제 코드를 사용해 여러분에게 이 최신 기술에 있는 은밀한 비밀을 소개합니다. 바로 사용할 수 있는 사전 훈련된 모델부터 밑바닥부터 만드는 사용자 정의 모델까지, 또한 성능에서부터 레이블이 없는 경우에까지, 저자들은 ML 엔지니어의 문제를 실용적으로 해결하고 최신 솔루션을 제공합니다. 이 책은 향후 수년 동안 현장에서 표준으로 자리매김할 것입니다.

출판사 서평

자연어 처리 애플리케이션을 만드는 큐브, 트랜스포머

이 책은 머신러닝 지식을 갖춘 엔지니어와 연구자를 대상으로 직접 모델을 구현하며 트랜스포머를 업무에 적용하는 실용적인 방법을 전달한다. 트랜스포머를 이용하는 데 필요한 기본적인 이론과 방법을 소개한 뒤, 다국어 텍스트의 개체명 인식(NER)을 비롯해 텍스트 생성, 텍스트 요약, 질문 답변(QA) 같은 목적에 맞는 다양한 자연어 처리 모델을 훈련해본다. 다양한 트랜스포머 모델에 표준화된 인터페이스를 제공하는 라이브러리인 허깅페이스(🤗) 트랜스포머스를 개발한 팀의 안내를 따라 내게 필요한 모델을 구축해보자.

대상 독자
● 트랜스포머를 입맛에 맞게 조정하고 싶은 데이터 과학자와 머신러닝 엔지니어
● 자기만의 자연어 처리 애플리케이션을 만들고 싶은 개발자

주요 내용
● 텍스트 분류, 개체명 인식 등 NLP 작업을 위한 트랜스포머 모델을 빌드 및 디버깅, 최적화하는 방법
● 언어 간 전이 학습에 트랜스포머를 사용하는 방법
● 레이블링된 데이터가 부족한 상황에서 트랜스포머를 적용해 모델 성능을 높이는 방법
● 지식 정제와 양자화, 가지치기 같은 기술을 사용한 트랜스포머 모델 효율화 방법
● 대규모 트랜스포머 모델을 밑바닥부터 훈련하고 여러 GPU 및 분산 환경으로 확장하는 방법

기본정보

상품정보
ISBN 9791169210508 ( 1169210503 )
발행(출시)일자 2022년 11월 30일
쪽수 484쪽
크기
180 * 234 * 26 mm / 991 g
총권수 1권
원서명/저자명 Natural Language Processing with Transformers/Lewis Tunstall

Klover

Klover 리뷰 안내
교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
리워드 안내
구매 후 90일 이내에 평점과 10자 이상의 리뷰 작성 시 e교환권 200원을 적립해 드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
판매가 1,000원 미만 도서의 경우 리워드 지급 대상에서 제외됩니다.
한달 후 리뷰
구매 후 30일~ 120일 이내에 작성된 두 번째 구매리뷰에 대해 한 달 후 리뷰로 인지하고 e교환권 100원을 추가 제공합니다.
운영 원칙 안내
Klover 리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

리뷰는 1인이 중복으로 작성하실 수는 있지만, 평점계산은 가장 최근에 남긴 1건의 리뷰만 반영됩니다.
신고하기
다른 고객이 작성리뷰에 대해 불쾌함을 느끼는 경우 신고를 할 수 있으며, 신고 자가 일정수준 이상 누적되면 작성하신 리뷰가 노출되지 않을 수 있습니다.

구매 후 리뷰 작성 시, e교환권 200원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
TOP

저자 모두보기

매장별 재고 및 위치

할인쿠폰 다운로드

  • 쿠폰은 주문결제화면에서 사용 가능합니다.
  • 다운로드한 쿠폰은 마이 > 혜택/포인트 에서 확인 가능합니다.
  • 도서정가제 적용 대상 상품에 대해서는 정가의 10%까지 쿠폰 할인이 가능합니다.
  • 도서정가제 적용 대상 상품에 10% 할인이 되었다면, 해당 상품에는 사용하실 수
    없습니다.

적립예정포인트 안내

  • 통합포인트 안내

    • 통합포인트는 교보문고(인터넷, 매장), 핫트랙스(인터넷, 매장), 모바일 교보문고 등 다양한 곳에서 사용하실 수 있습니다.
    • 상품 주문 시, 해당 상품의 적립률에 따라 적립 예정 포인트가 자동 합산되고 주문하신 상품이 발송완료 된 후에 자동으로 적립됩니다.
    • 단, 쿠폰 및 마일리지, 통합포인트, e교환권 사용 시 적립 예정 통합포인트가 변동될 수 있으며 주문취소나 반품시에는 적립된 통합포인트가 다시 차감됩니다.
  • 통합포인트 적립 안내

    • 통합포인트는 도서정가제 범위 내에서 적용됩니다.
    • 추가적립 및 회원 혜택은 도서정가제 대상상품(국내도서, eBook등)으로만 주문시는 해당되지 않습니다.
  • 기본적립) 상품별 적립금액

    • 온라인교보문고에서 상품 구매시 상품의 적립률에 따라 적립됩니다.
    • 단 도서정가제 적용 대상인 국내도서,eBook은 15%내에서 할인율을 제외한 금액내로 적립됩니다.
  • 추가적립) 5만원 이상 구매시 통합포인트 2천원 추가적립

    • 5만원 이상 구매시 통합포인트 2천원 적립됩니다.
    • 도서정가제 예외상품(외서,음반,DVD,잡지(일부),기프트) 2천원 이상 포함시 적립 가능합니다.
    • 주문하신 상품이 전체 품절인 경우 적립되지 않습니다.
  • 회원혜택) 3만원이상 구매시 회원등급별 2~4% 추가적립

    • 회원등급이 플래티넘, 골드, 실버 등급의 경우 추가적립 됩니다.
    • 추가적립은 실결제액 기준(쿠폰 및 마일리지, 통합포인트, e교환권 사용액 제외) 3만원 이상일 경우 적립됩니다.
    • 주문 후 취소,반품분의 통합포인트는 단품별로 회수되며, 반품으로 인해 결제잔액이 3만원 미만으로 변경될 경우 추가 통합포인트는 전액 회수될 수 있습니다.

제휴 포인트 안내

제휴 포인트 사용

  • OK CASHBAG 10원 단위사용 (사용금액 제한없음)
  • GS&POINT 최대 10만 원 사용
더보기

구매방법 별 배송안내

배송 일정 안내

  • 출고 예정일은 주문상품의 결제(입금)가 확인되는 날 기준으로 상품을 준비하여 상품 포장 후 교보문고 물류센터에서 택배사로 전달하게 되는 예상 일자입니다.
  • 도착 예정일은 출고 예정일에서 택배사의 배송일 (약1~2일)이 더해진 날이며 연휴 및 토, 일, 공휴일을 제외한 근무일 기준입니다.
배송 일정 안내
출고예정일 도착예정일
1일이내 상품주문 후 2~3일 이내
2일이내 상품주문 후 3~4일 이내
3일이내 상품주문 후 4~5일 이내
4일이내 상품주문 후 5~6일 이내

연휴 및 토, 일, 공휴일은 제외됩니다.

당일배송 유의사항

  • 수도권 외 지역에서 선물포장하기 또는 사은품을 포함하여 주문할 경우 당일배송 불가
  • 회사에서 수령할 경우 당일배송 불가 (퇴근시간 이후 도착 또는 익일 배송 될 수 있음)
  • 무통장입금 주문 후 당일 배송 가능 시간 이후 입금된 경우 당일 배송 불가
  • 주문 후 배송지 변경 시 변경된 배송지에 따라 익일 배송될 수 있습니다.
  • 수도권 외 지역의 경우 효율적인 배송을 위해 각 지역 매장에서 택배를 발송하므로, 주문 시의 부록과 상이할 수 있습니다.
  • 각 지역 매장에서 재고 부족 시 재고 확보를 위해 당일 배송이 불가할 수 있습니다.

일반배송 시 유의사항

  • 날씨나 택배사의 사정에 따라 배송이 지연될 수 있습니다.
  • 수도권 외 지역 바로배송 서비스의 경우 경품 수령 선택 여부에 따라 도착 예정일이 변경됩니다.
  • 출고 예정일이 5일 이상인 상품의 경우(결제일로부터 7일 동안 미입고), 출판사 / 유통사 사정으로 품/절판 되어 구입이 어려울 수 있습니다. 이 경우 SMS, 메일로 알려드립니다.
  • 선물포장 주문 시 합배송 처리되며, 일부상품 품절 시 도착 예정일이 늦어질 수 있습니다.
  • 분철상품 주문 시 분철 작업으로 인해 기존 도착 예정일에 2일 정도 추가되며, 당일 배송, 해외 배송이 불가합니다.

해외주문 시 유의사항

  • 해외주문도서는 해외 거래처 사정에 의해 품절/지연될 수 있습니다.

Special order 주문 시 유의사항

  • 스페셜오더 도서나 일서 해외 주문 도서와 함께 주문 시 배송일이 이에 맞추어 지연되오니, 이점 유의해 주시기 바랍니다.

바로드림존에서 받기

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상 시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함 되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해 주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반 코너에서 수령확인이 가능합니다
  • 선물 받는 분의 휴대폰번호만 입력하신 후 결제하시면 받는 분 휴대폰으로 선물번호가 전달됩니다.
  • 문자를 받은 분께서는 마이 > 주문관리 > 모바일 선물내역 화면에서 선물번호와 배송지 정보를 입력하시면 선물주문이 완료되어 상품준비 및 배송이 진행됩니다.
  • 선물하기 결제하신 후 14일까지 받는 분이 선물번호를 등록하지 않으실 경우 주문은 자동취소 됩니다.
  • 또한 배송 전 상품이 품절 / 절판 될 경우 주문은 자동취소 됩니다.

바로드림 서비스 안내

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.
  1. STEP 01
    픽업박스에서 찾기 주문
  2. STEP 02
    도서준비완료 후 휴대폰으로 인증번호 전송
  3. STEP 03
    매장 방문하여 픽업박스에서 인증번호 입력 후 도서 픽업
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.

도서 소득공제 안내

  • 도서 소득공제란?

    • 2018년 7월 1일 부터 근로소득자가 신용카드 등으로 도서구입 및 공연을 관람하기 위해 사용한 금액이 추가 공제됩니다. (추가 공제한도 100만원까지 인정)
      • 총 급여 7,000만 원 이하 근로소득자 중 신용카드, 직불카드 등 사용액이 총급여의 25%가 넘는 사람에게 적용
      • 현재 ‘신용카드 등 사용금액’의 소득 공제한도는 300만 원이고 신용카드사용액의 공제율은 15%이지만, 도서·공연 사용분은 추가로 100만 원의 소득 공제한도가 인정되고 공제율은 30%로 적용
      • 시행시기 이후 도서·공연 사용액에 대해서는 “2018년 귀속 근로소득 연말 정산”시기(19.1.15~)에 국세청 홈택스 연말정산간소화 서비스 제공
  • 도서 소득공제 대상

    • 도서(내서,외서,해외주문도서), eBook(구매)
    • 도서 소득공제 대상 상품에 수반되는 국내 배송비 (해외 배송비 제외)
      • 제외상품 : 잡지 등 정기 간행물, 음반, DVD, 기프트, eBook(대여,학술논문), 사은품, 선물포장, 책 그리고 꽃
      • 상품정보의 “소득공제” 표기를 참고하시기 바랍니다.
  • 도서 소득공제 가능 결제수단

    • 카드결제 : 신용카드(개인카드에 한함)
    • 현금결제 : 예치금, 교보e캐시(충전에한함), 해피머니상품권, 컬쳐캐쉬, 기프트 카드, 실시간계좌이체, 온라인입금
    • 간편결제 : 교보페이, 네이버페이, 삼성페이, 카카오페이, PAYCO, 토스, CHAI
      • 현금결제는 현금영수증을 개인소득공제용으로 신청 시에만 도서 소득공제 됩니다.
      • 교보e캐시 도서 소득공제 금액은 교보eBook > e캐시 > 충전/사용내역에서 확인 가능합니다.
      • SKpay, 휴대폰 결제, 교보캐시는 도서 소득공제 불가
  • 부분 취소 안내

    • 대상상품+제외상품을 주문하여 신용카드 "2회 결제하기"를 선택 한 경우, 부분취소/반품 시 예치금으로 환원됩니다.

      신용카드 결제 후 예치금으로 환원 된 경우 승인취소 되지 않습니다.

  • 도서 소득공제 불가 안내

    • 법인카드로 결제 한 경우
    • 현금영수증을 사업자증빙용으로 신청 한 경우
    • 분철신청시 발생되는 분철비용

알림 신청

아래의 알림 신청 시 원하시는 소식을 받아 보실 수 있습니다.
알림신청 취소는 마이룸 > 알림신청내역에서 가능합니다.

트랜스포머를 활용한 자연어 처리
허깅페이스 개발팀이 알려주는 자연어 애플리케이션 구축
한달 후 리뷰
/ 좋았어요
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 올해 주식 투자를 시작했다. 아무것도 모르고 초심자의 행운으로 분유값 정도를 벌고 나니, 조금 더 공부해보고 싶어져서 『초격차 투자법』을 구매했다.
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
기대가됩니다~
기대가됩니다~
기대가됩니다~
이 구매자의 첫 리뷰 보기
/ 좋았어요
하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까 예견해 본다. 책한권으로 등의 근육들이 오그라진 느낌에 아직도 느껴진다. 하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이 처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까..
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
신고

신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.

허위 신고일 경우, 신고자의 서비스 활동이 제한될 수 있으니 유의하시어
신중하게 신고해주세요.

판형알림

  • A3 [297×420mm]
  • A4 [210×297mm]
  • A5 [148×210mm]
  • A6 [105×148mm]
  • B4 [257×364mm]
  • B5 [182×257mm]
  • B6 [128×182mm]
  • 8C [8절]
  • 기타 [가로×세로]
EBS X 교보문고 고객님을 위한 5,000원 열공 혜택!
자세히 보기