본문 바로가기

추천 검색어

실시간 인기 검색어

일래스틱 스택을 이용한 머신러닝

머신러닝 피처로 데이터에서 귀중한 인사이트를 얻자 | 2 판
데이터 과학
에이콘출판 · 2022년 09월 30일
가장 최근에 출시된 개정판입니다. 구판보기
0.0 (0개의 리뷰)
평가된 감성태그가
없습니다
  • 일래스틱 스택을 이용한 머신러닝 대표 이미지
    일래스틱 스택을 이용한 머신러닝 대표 이미지
  • A4
    사이즈 비교
    210x297
    188x235
    단위 : mm
MD의 선택 무료배송 이벤트 소득공제
10% 32,400 36,000
적립/혜택
1,800P

기본적립

5% 적립 1,800P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,800P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서 / 외국도서
도서만 15,000원 이상 구매 시 무료배송
도서 + 잡지 / 만화 / :K컬렉션을 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

잡지 / 만화 / :K컬렉션 (교보배송)
각각 구매하거나 함께 2만 원 이상 구매 시 무료배송

2만원 미만 시 2,500원 배송비 부과

해외주문 서양도서 / 해외주문 일본도서 (교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품 (전집, GIFT, 음반 / DVD 등)
중고장터 상품
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
주문정보를 불러오는 중입니다.
서울시 종로구 종로 1

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

패키지

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

ELK 스택으로 알려진 일래스틱 스택은 사용자가 검색 데이터를 효과적으로 수집, 처리, 분석하도록 도와주는 로그 분석 솔루션이다. 주요 상용 기능인 머신러닝이 추가된 일래스틱 스택은 이 분석 프로세스를 훨씬 더 효율적으로 만든다.
2판에서는 시계열 데이터 분석은 물론 분류, 회귀, 아웃라이어 탐지를 위한 일래스틱 스택의 머신러닝 기능에 대해 포괄적인 개요를 제공한다. 머신러닝 개념을 직관적으로 설명하고 있으며 로그 파일, 네트워크 흐름, 애플리케이션 메트릭, 재무 데이터와 같은 다양한 데이터 유형에 대해 시계열 분석을 수행한다. 또한 로깅, 보안 및 메트릭을 위해 일래스틱 스택 내에서 머신러닝을 배포한다. 마지막에는 데이터 프레임 분석이 머신러닝이 도움될 수 있는 완전히 새로운 사용 사례의 문을 어떻게 여는지 알게 될 것이다.
이 책이 끝날 즈음에는 머신러닝을 분산 검색과 데이터 분석 플랫폼에 통합하는 데 필요한 지식과 함께 머신러닝과 일래스틱 스택에 있어 실질적인 경험을 갖게 될 것이다.

작가정보

저자(글) 리치 콜리어

Rich Collier
일래스틱의 솔루션 아키텍트다. 프리러트(Prelert) 인수로 일래스틱 팀에 합류해 소프트웨어, 하드웨어, 서비스 기반 솔루션을 위한 솔루션 설계자 및 사전 판매 시스템 엔지니어로서 20년 이상의 경험을 가지고 있다. 빅데이터 분석, 머신러닝, 이상 탐지, 위협 탐지, 보안 운영, 애플리케이션 성능 관리, 웹 애플리케이션, 컨텍 센터 기술을 포함한다. 메사추세츠주 보스턴에 거주하고 있다.

저자(글) 카밀라 몬토넨

Camilla Montonen
일래스틱의 수석 머신러닝 엔지니어다.

저자(글) 바할딘 아자미

Bahaaldine Azarmi
일래스틱의 솔루션 아키텍트다. 사용자 행동 및 소셜 분석에 중점을 둔 마케팅 데이터 플랫폼인 리치 파이브(Reach Five)를 공동 설립했다. 또한 탈렌드(Talend)와 오라클(Oracle) 같은 다양한 소프트웨어 공급업체에 근무하면서 솔루션 아키텍트와 아키텍트 직책을 맡았다. 일래스틱 스택을 사용한 머신러닝 이전에 『키바나 5.0 배우기Learning Kibana 5.0』(에이콘, 2017), 『Scalable Big Data Architecture, Talend for Big Data』(Apress, 2015)를 포함한 책을 저술했다. 파리에 기반을 두고 있으며 폴리텍 파리에서 컴퓨터 과학 석사 학위를 받았다.

번역 최중연

로그, 메트릭, 트레이스를 통합 제공하는 사내 모니터링 시스템을 개발하고 있으며, 다양한 유형의 모니터링 데이터를 저장하고 검색하는 기술과 다양한 데이터 소스로부터 서비스의 이상을 감지하고 제공하는 시스템에 관심이 많다. 번역서로는 에이콘출판사에서 펴낸 『일래스틱 스택을 이용한 머신러닝』(2020), 『Kafka Streams in Action』(2019), 『일래스틱서치 쿡북 3/e』(2019), 『키바나 5.0 배우기』(2017), 『Elasticsearch in Action』(2016) 등이 있다.

작가의 말

인간의 능력만으로는 검색이 불가능할 수준으로 누적돼 가는 데이터 세상에서, IT 회사들은 어떻게 하면 비용 효율적으로 시스템의 문제를 빠르게 식별할 수 있는가를 고민한다. 이를 해결하고 로그, 메트릭 같은 다양한 데이터 소스로부터 시스템을 관찰하기 위해 다양한 전문 도구들을 사용하고 있다. 또한 경험에 의지해 인간이 예측 가능한 범위 내에서 다양한 대시보드와 얼러팅으로 모니터링 활동을 한다. 하지만 애플리케이션 아키텍처는 전통적인 모놀로식(Monolithic)에서 마이크로서비스(Microservice)화돼 가고, 애플리케이션을 운영할 인프라는 쿠버네티스와 같은 컨테이너 환경으로 빠르게 옮겨 가고 있다. 이렇듯 시스템 환경은 점점 더 복잡해지고 관찰해야 할 데이터의 양과 종류도 점점 더 늘고 있다. 그로 인해 우리는 수집한 수많은 데이터 중 대부분을 관찰하지 못한 채 버리고 있다. 인간의 힘만으로 그 모든 데이터를 처리하기에는 우리의 삶은 너무 짧고 세상은 너무 빠르게 변화하고 있다. 이미 머신러닝이라는 단어는 유행하다 못해 주변에서도 쉽게 들을 수 있는 흔한 용어가 됐고 데브옵스(DevOps)라는 합성어를 따서 에이아이옵스(AIOps)라는 단어도 유행하고 있다. AI와 무관한 내가 소속된 조직에서도 몇 년째 에이아이옵스라는 용어를 사용하는 작은 조직이 있을 정도로 이제 이 에이아이옵스도 흔한 용어가 돼 가고 있다. 시스템을 운영하기 위해 인간이 아닌 기계에 의존해 데이터를 분석하고 시스템에 잠재된 문제를 발굴하거나 서비스의 이상을 감지해야만 하는 상황에 이르게 된 것이다. 『일래스틱 스택을 이용한 머신러닝』(에이콘, 2020)의 개정판인 이 책은 일래스틱 스택이 제공하는 안정적인 머신러닝 피처를 활용해 로그, 메트릭과 같은 데이터소스로부터 이상을 감지하는 방법인 일래스틱 스택을 처음 사용하는 사용자도 쉽게 이해하고 따라할 수 있도록 자세하게 설명한다. 또한 그간 새로 추가된 다양한 피처도 예제와 함께 상세하게 소개하고 있다. 특히 새로 추가된 데이터 프레임 피처는 도큐먼트를 엔티티 중심의 인덱스로 변환해 아웃라이어, 분류, 회귀 분석 영역까지 확장 가능해졌으며, 일래스틱서치의 새로운 네이티브 클라이언트인 일런드(Eland)가 일래스틱서치에 저장된 데이터를 파이썬의 강력한 데이터 분석 생태계와 쉽게 연결되도록 해줬다. 이러한 새로운 피처를 실질적인 예제와 함께 하나씩 배워 현업에 적용해볼 수 있도록 풀어 설명한 이 책이 데이터의 늪에 빠진 개발자와 운영자에게 구원의 손길이 될 수 있기를 바란다. - 역자 최중연

목차

  • 1장. IT를 위한 머신러닝
    __IT의 역사적 도전 과제 극복
    __엄청나게 많은 데이터 처리
    __자동화된 이상 탐지의 출현
    __비지도 ML 대 지도 ML
    __이상 탐지를 위한 비지도 ML 사용하기
    ____특이에 관해 정의하기
    ____정상 상태 학습하기
    ____확률 모델
    ____모델 학습하기
    ____디트랜드
    ____특이성에 대한 점수화
    ____시간 요소
    __데이터 프레임 분석에 지도 ML 적용하기
    ____지도 학습 과정
    __요약

    2장. 활성화와 운영화
    __기술 요구 사항
    __일래스틱 ML 기능 활성화
    ____자체 관리형 클러스터에서 ML 활성화
    ____클라우드에서 ML 활성화 - 일래스틱서치 서비스
    __운영화의 이해
    ____ML 노드
    ____작업
    ____시계열 분석에서 데이터 버킷팅
    ____일래스틱 ML에 데이터 공급
    ____제공하는 인덱스
    ______.ml-config
    ______.ml-state-*
    ______.ml-notification-*
    ______.ml-annoataions-*
    ______.ml-stats-*
    ______.ml-anomalies-*
    ____이상 탐지 오케스트레이션
    ____이상 탐지 모델 스냅숏
    __요약

    3장. 이상 탐지
    __기술 요구 사항
    __일래스틱 ML 작업 유형
    __탐지기 해부
    ____함수
    ____필드
    ____partition 필드
    ____by 필드
    ____over 필드
    ____공식(formula)
    __이벤트 비율의 변화 탐지
    ____카운트 함수 탐색
    ____다른 카운트 함수
    ______논제로 카운트
    ______디스팅트 카운트
    __메트릭 값에서 변화 탐지
    ____메트릭 함수
    ______min, max, mean, median과 metric
    ______varp
    ______sum, not-null sum
    __고급 탐지기 함수의 이해
    ____레어(rare)
    ____프리퀀시 레어(frequency rare)
    ____정보 내용(information content)
    ____지오그래픽(geographic)
    ____시간
    __범주형 피처로 분석 분할
    ____분할 필드 설정
    ____partition과 by_field를 사용한 분할의 차이점
    ____이중 분할에 한계가 있을까?
    __시간 분석과 모집단 분석의 이해
    __비정형 메시지 범주화 분석
    ____범주화에 훌륭한 후보가 되는 메시지 유형
    ____범주화에 사용되는 프로세스
    ____범주 분석
    ____범주화 작업 예제
    ____범주화 사용을 피해야 하는 경우
    __API를 통한 일래스틱 ML 관리
    __요약

    4장. 예측
    __기술 요구 사항
    __예언과 대비되는 예측
    __예측 사용 사례
    __작업의 예측 이론
    __단일 시계열 예측
    __예측 결과 검토
    __다중 시계열 예측
    __요약

    5장. 결과 해석
    __기술 요구 사항
    __일래스틱 ML 결과 인덱스 보기
    __이상 징후 점수
    ____버킷 수준 스코어링
    ____정규화
    ____인플루언서 수준 점수
    ____인플루언서
    ____레코드 수준 점수
    __결과 인덱스 스키마의 세부 정보
    ____버킷 결과
    ____레코드 결과
    ____인플루언서 결과
    __다중 버킷 이상 징후
    ____다중 버킷 이상 징후 예제
    ____다중 버킷 스코어링
    __예측 결과
    ____예측 결과 쿼리
    __결과 API
    ____결과 API 엔드포인트
    ____전체 버킷 조회 API
    ____범주 조회 API
    __사용자 정의 대시보드와 캔버스 워크패드
    ____대시보드 “임베디블”
    ____TSVB에서 이상 징후 주석
    ____캔버스 워크패드 사용자 정의
    __요약

    6장. ML 분석에 기반한 얼러팅
    __기술 요구 사항
    __얼러팅 개념 이해
    ____모든 이상 징후가 얼럿일 필요는 없다
    ____실시간 얼러팅에는 타이밍이 중요하다
    __ML UI에서 얼럿 작성
    ____샘플 이상 탐지 작업 정의
    __샘플 작업에 대한 얼럿 생성
    ____실시간 이례적인 행위 시뮬레이션
    ____얼럿 수신과 검토
    __와치(watch)로 얼럿 만들기
    ____레거시 기본 ML 와치의 구조 이해
    ______trigger 섹션
    ______input 섹션
    ______condition 섹션
    ______action 섹션
    ____사용자 정의 와치는 몇 가지 고유한 기능을 제공할 수 있다
    ______연결된 입력과 스크립트 내의 조건
    ______연결된 입력 간에 정보 전달
    __요약

    7장. AIOps와 근본 원인 분석
    __기술 요구 사항
    __AIOps 용어의 이해
    __KPI의 중요성과 한계 이해
    __KPI를 넘어서
    __더 나은 분석을 위한 데이터 조직화
    ____이상 탐지 데이터피드에 대한 사용자 정의 쿼리
    ____수집 시 데이터 강화
    __컨텍스트 정보 활용
    ____분석 분할
    ____통계적 인플루언서
    __RCA를 위해 모든 것을 통합
    ____가동 중단 배경
    ____상관관계와 공유된 인플루언서
    __요약

    8장. 다른 일래스틱 스택 앱에서 이상 탐지
    __기술 요구 사항
    __일래스틱 APM의 이상 탐지
    ____APM에 대한 이상 탐지 활성화
    ____APM UI에서 이상 탐지 작업 결과 조회
    ____데이터 인식기를 통한 ML 작업 생성
    __로그 앱의 이상 탐지
    ____로그 카테고리
    ____로그 이상 징후
    ____메트릭 앱의 이상 탐지
    __업타임 앱의 이상 탐지
    __일래스틱 시큐리티 앱의 이상 탐지
    ____사전 구축된 이상 탐지 작업
    __탐지 얼럿으로서의 이상 탐지 작업
    __요약

    9장. 데이터 프레임 분석 소개
    __기술 요구 사항
    __변환하는 방법 학습
    ____왜 변환이 유용한가?
    ____변환 작업의 내부 구조
    ____전자 상거래 주문을 분석하기 위해 변환 사용
    ____더 고급 수준의 피벗과 집계 구성 탐색
    ____배치 변환과 연속 변환의 차이점 발견
    ____연속 변환을 사용해 소셜 미디어 피드 분석
    __고급 변환 구성에 페인리스 사용
    ____페인리스 소개
    ____변수, 연산자, 제어 흐름
    ____함수
    __파이썬과 일래스틱서치로 작업하기
    ____파이선 일래스틱서치 클라이언트에 대해 간략하게 둘러보기
    ____일런드의 개발 목적 이해
    ____일런드와 함께하는 첫걸음
    __요약
    __더 읽어보기

    10장. 아웃라이어 탐지
    __기술 요구 사항
    __아웃라이어 탐지의 내부 작동 이해
    ____아웃라이어 탐지에 사용하는 4가지 기술 이해
    ______거리 기반 기술
    ______밀도 기반 기술
    __피처 영향력 이해
    ______각 점에 대한 피처 영향력은 어떻게 계산하는가?
    ____아웃라이어 탐지는 이상 탐지와 어떻게 다른가?
    ______확률 모델 기반 대 인스턴스 기반
    ______점수화
    ______데이터 특성
    ______온라인 대 배치(batch)
    __실제 아웃라이어 탐지 적용
    __Evaluate API로 아웃라이어 탐지 평가
    __아웃라이어 탐지를 위한 하이퍼파라미터 조정
    __요약

    11장. 분류 분석
    __기술 요구 사항
    __분류: 데이터에서 훈련된 모델로
    ____데이터에서 분류 모델 학습
    ____피처 엔지니어링
    ____모델 평가
    __분류의 첫 걸음
    __분류의 내부 구조: 그래디언트 부스트 의사결정 트리
    ____의사결정 트리 소개
    ____그래디언트 부스트 의사결정 트리
    __하이퍼파라미터
    __결과 해석
    ____분류 확률
    ____분류 점수
    ____피처 중요도
    __요약
    __더 읽어보기

    12장. 회귀
    __기술 요구 사항
    __회귀 분석을 사용해 주택 가격 예측
    __회귀를 위한 의사결정 트리 사용
    __요약
    __더 읽어보기

    13장. 추론
    __기술 요구 사항
    __훈련된 모델 API 및 파이썬을 사용해 훈련된 머신러닝 모델을 검사하고 가져오며 내보내기
    __훈련된 모델 API 살펴보기
    ____훈련된 모델 API와 파이썬을 사용해 훈련된 모델 내보내기와 가져오기
    __추론 프로세서와 인제스트 파이프라인 이해하기
    ____인제스트 파이프라인에서 누락되거나 손상된 데이터 처리
    ____예측에 대한 더 많은 통찰력을 얻기 위한 추론 프로세서 구성 옵션 사용하기
    __일런드를 사용해 외부 모델을 일래스틱서치로 가져오기
    ____일런드에서 지원하는 외부 모델에 대해 알아보기
    ____scikit-learn의 DecisionTreeClassifier로 훈련하고 일런드를 사용해 일래스틱서치로 가져오기
    __요약

    부록. 이상 탐지 팁
    __기술 요구 사항
    __분할 작업 대 비분할 작업의 인플루언서 이해하기
    __단측함수를 유리하게 사용하기
    __기간 무시하기
    ____예정된 (알려진) 시간 윈도 무시하기
    ______캘린더 이벤트 생성
    ______원하는 타임프레임을 무시하기 위해 데이터피드 중지 및 시작
    ____예기치 못한 시간 윈도를 사후에 무시하기
    ______작업의 복제와 과거 데이터의 재실행
    ______작업을 이전 모델 스냅숏으로 되돌리기
    __사용자 정의 규칙과 필터 유리하게 사용하기
    ____사용자 정의 규칙 만들기
    ______“하향식” 얼러팅 철학에 대한 사용자 지정 규칙의 장점
    __이상 탐지 작업 처리량에 관한 고려 사항
    __사용 사례의 과도한 엔지니어링 방지하기
    __런타임 필드에서 이상 탐지 사용하기
    __요약

출판사 서평

◈ 이 책에서 다루는 내용 ◈

◆ 일래스틱 스택에서의 머신러닝 상용 기능 활성화하기
◆ 다양한 유형의 이상 징후를 탐지하고 예측하기
◆ IT 운영, 보안 분석 및 기타 사용 사례에 효과적인 이상 탐지 적용하기
◆ 사용자 정의 뷰, 대시보드 및 사전 경고에서 일래스틱 머신러닝의 결과 활용하기
◆ 실시간 추론을 위한 지도 머신 러닝(supervised machine learning) 모델 훈련과 배포하기
◆ 일래스틱 머신러닝 활용을 위한 다양한 팁과 트릭 알아보기


◈ 이 책의 대상 독자 ◈

머신러닝 전문가나 맞춤형 개발에 의존하지 않고 일래스틱서치 데이터에 대한 통찰력을 얻으려는 데이터 전문가를 대상으로 한다. 머신러닝을 관측 가능성(Observability), 보안(Security) 및 분석(Analytics) 애플리케이션과 통합하려는 경우에도 유용하다. 이 책을 최대한 활용하려면 일래스틱 스택에 대한 실무 지식이 필요하다.


◈ 이 책의 구성 ◈

1장, 'IT를 위한 머신러닝'에서는 IT와 보안 운영에서 수동적인 데이터 분석의 역사적 과제에 대한 도입과 배경 입문서 역할을 한다. 내부에서 일어나는 일을 본질적으로 이해하기 위해 일래스틱 머신러닝의 작동 이론에 대한 개요를 포괄적으로 제공한다.
2장, '활성화와 운영화'에서는 일래스틱 스택에서 머신러닝을 활성화하는 방법을 설명하고 일래스틱 머신러닝 알고리듬의 작동 이론도 자세히 살펴본다. 또한 일래스틱 머신러닝의 물류 운영도 자세히 다룬다.
3장, '이상 탐지'에서는 시계열 분석의 핵심인 자동화된 비지도(unsupervised) 이상 탐지 기술을 자세히 설명한다.
4장, '예측'에서는 일래스틱 머신러닝의 정교한 시계열 모델을 단순한 이상 탐지 이상의 용도로 사용하는 방법을 설명한다. 예측 기능을 통해 사용자는 미래의 추세와 행동을 추정해 용량 계획과 같은 사용 사례를 지원할 수 있다.
5장, '결과 해석'에서는 이상 탐지 및 예측 결과를 완전히 이해하고 시각화, 대시보드 및 인포그래픽에서 장점을 활용하는 방법을 소개한다.
6장, 'ML 분석에 기반한 얼러팅'에서는 이상 탐지를 더욱 실행 가능하게 만들기 위해 일래스틱 얼러팅의 사전 알림 기능을 머신러닝으로 파악한 통찰력과 통합하는 다양한 기술을 설명한다.
7장, 'AIOps와 근본 원인 분석'에서는 일래스틱 머신러닝을 활용해 이질적인 데이터 소스 데이터를 전체적으로 검사하고 분석해서 분석가에게 상관관계 뷰를 제공하는 레거시 접근 방식 측면에서 한 발 더 나아간 방법을 살펴본다.
8장, '다른 일래스틱 스택 앱에서 이상 탐지'에서는 데이터 분석에 가치를 부여하기 위해 일래스틱 스택 내의 다른 앱에서 이상 탐지를 활용하는 방법을 알아본다.
9장, '데이터 프레임 분석 소개'에서는 데이터 프레임 분석의 개념을 설명하고, 시계열 이상 탐지와는 어떻게 다른지, 일래스틱 머신러닝으로 데이터를 로드, 준비, 변환 및 분석하기 위해 사용자가 사용할 수 있는 도구를 다룬다.
10장, '아웃라이어 탐지'에서는 일래스틱 머신러닝과 함께 데이터 프레임 분석의 아웃라이어 탐지 분석 기능을 살펴본다.
11장, '분류 분석'에서는 일래스틱 머신러닝과 함께 데이터 프레임 분석의 분류 분석 기능을 다룬다.
12장, '회귀'에서는 일래스틱 머신러닝과 함께 데이터 프레임 분석의 회귀 분석 기능을 소개한다.
13장, '추론'에서는 “추론”을 위해 (실제로 조작 가능한 방식으로 출력 값을 예측하기 위해) 훈련된 머신러닝 모델에 대한 사용법을 살펴본다.
14장, '부록: 이상 탐지 팁'에서는 다른 장에서는 잘 맞지 않는 다양한 실용적인 조언을 담았다. 이러한 유용한 정보는 일래스틱 ML을 최대한 활용하는 데 도움이 될 것이다.

기본정보

상품정보
ISBN 9791161756844 ( 1161756841 )
발행(출시)일자 2022년 09월 30일
쪽수 492쪽
크기
188 * 235 * 35 mm / 1236 g
총권수 1권
시리즈명
데이터 과학
원서명/저자명 Machine Learning with the Elastic Stack - Second Edition/Collier, Rich
이 책의 개정정보
가장 최근에 출시된 개정판입니다. 구판보기

Klover

Klover 리뷰 안내
교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
리워드 안내
구매 후 90일 이내에 평점과 10자 이상의 리뷰 작성 시 e교환권 200원을 적립해 드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
판매가 1,000원 미만 도서의 경우 리워드 지급 대상에서 제외됩니다.
한달 후 리뷰
구매 후 30일~ 120일 이내에 작성된 두 번째 구매리뷰에 대해 한 달 후 리뷰로 인지하고 e교환권 100원을 추가 제공합니다.
운영 원칙 안내
Klover 리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

리뷰는 1인이 중복으로 작성하실 수는 있지만, 평점계산은 가장 최근에 남긴 1건의 리뷰만 반영됩니다.
신고하기
다른 고객이 작성리뷰에 대해 불쾌함을 느끼는 경우 신고를 할 수 있으며, 신고 자가 일정수준 이상 누적되면 작성하신 리뷰가 노출되지 않을 수 있습니다.

구매 후 리뷰 작성 시, e교환권 200원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
TOP

저자 모두보기

매장별 재고 및 위치

할인쿠폰 다운로드

  • 쿠폰은 주문결제화면에서 사용 가능합니다.
  • 다운로드한 쿠폰은 마이 > 혜택/포인트 에서 확인 가능합니다.
  • 도서정가제 적용 대상 상품에 대해서는 정가의 10%까지 쿠폰 할인이 가능합니다.
  • 도서정가제 적용 대상 상품에 10% 할인이 되었다면, 해당 상품에는 사용하실 수
    없습니다.

적립예정포인트 안내

  • 통합포인트 안내

    • 통합포인트는 교보문고(인터넷, 매장), 핫트랙스(인터넷, 매장), 모바일 교보문고 등 다양한 곳에서 사용하실 수 있습니다.
    • 상품 주문 시, 해당 상품의 적립률에 따라 적립 예정 포인트가 자동 합산되고 주문하신 상품이 발송완료 된 후에 자동으로 적립됩니다.
    • 단, 쿠폰 및 마일리지, 통합포인트, e교환권 사용 시 적립 예정 통합포인트가 변동될 수 있으며 주문취소나 반품시에는 적립된 통합포인트가 다시 차감됩니다.
  • 통합포인트 적립 안내

    • 통합포인트는 도서정가제 범위 내에서 적용됩니다.
    • 추가적립 및 회원 혜택은 도서정가제 대상상품(국내도서, eBook등)으로만 주문시는 해당되지 않습니다.
  • 기본적립) 상품별 적립금액

    • 온라인교보문고에서 상품 구매시 상품의 적립률에 따라 적립됩니다.
    • 단 도서정가제 적용 대상인 국내도서,eBook은 15%내에서 할인율을 제외한 금액내로 적립됩니다.
  • 추가적립) 5만원 이상 구매시 통합포인트 2천원 추가적립

    • 5만원 이상 구매시 통합포인트 2천원 적립됩니다.
    • 도서정가제 예외상품(외서,음반,DVD,잡지(일부),기프트) 2천원 이상 포함시 적립 가능합니다.
    • 주문하신 상품이 전체 품절인 경우 적립되지 않습니다.
  • 회원혜택) 3만원이상 구매시 회원등급별 2~4% 추가적립

    • 회원등급이 플래티넘, 골드, 실버 등급의 경우 추가적립 됩니다.
    • 추가적립은 실결제액 기준(쿠폰 및 마일리지, 통합포인트, e교환권 사용액 제외) 3만원 이상일 경우 적립됩니다.
    • 주문 후 취소,반품분의 통합포인트는 단품별로 회수되며, 반품으로 인해 결제잔액이 3만원 미만으로 변경될 경우 추가 통합포인트는 전액 회수될 수 있습니다.

제휴 포인트 안내

제휴 포인트 사용

  • OK CASHBAG 10원 단위사용 (사용금액 제한없음)
  • GS&POINT 최대 10만 원 사용
더보기

구매방법 별 배송안내

배송 일정 안내

  • 출고 예정일은 주문상품의 결제(입금)가 확인되는 날 기준으로 상품을 준비하여 상품 포장 후 교보문고 물류센터에서 택배사로 전달하게 되는 예상 일자입니다.
  • 도착 예정일은 출고 예정일에서 택배사의 배송일 (약1~2일)이 더해진 날이며 연휴 및 토, 일, 공휴일을 제외한 근무일 기준입니다.
배송 일정 안내
출고예정일 도착예정일
1일이내 상품주문 후 2~3일 이내
2일이내 상품주문 후 3~4일 이내
3일이내 상품주문 후 4~5일 이내
4일이내 상품주문 후 5~6일 이내

연휴 및 토, 일, 공휴일은 제외됩니다.

당일배송 유의사항

  • 수도권 외 지역에서 선물포장하기 또는 사은품을 포함하여 주문할 경우 당일배송 불가
  • 회사에서 수령할 경우 당일배송 불가 (퇴근시간 이후 도착 또는 익일 배송 될 수 있음)
  • 무통장입금 주문 후 당일 배송 가능 시간 이후 입금된 경우 당일 배송 불가
  • 주문 후 배송지 변경 시 변경된 배송지에 따라 익일 배송될 수 있습니다.
  • 수도권 외 지역의 경우 효율적인 배송을 위해 각 지역 매장에서 택배를 발송하므로, 주문 시의 부록과 상이할 수 있습니다.
  • 각 지역 매장에서 재고 부족 시 재고 확보를 위해 당일 배송이 불가할 수 있습니다.

일반배송 시 유의사항

  • 날씨나 택배사의 사정에 따라 배송이 지연될 수 있습니다.
  • 수도권 외 지역 바로배송 서비스의 경우 경품 수령 선택 여부에 따라 도착 예정일이 변경됩니다.
  • 출고 예정일이 5일 이상인 상품의 경우(결제일로부터 7일 동안 미입고), 출판사 / 유통사 사정으로 품/절판 되어 구입이 어려울 수 있습니다. 이 경우 SMS, 메일로 알려드립니다.
  • 선물포장 주문 시 합배송 처리되며, 일부상품 품절 시 도착 예정일이 늦어질 수 있습니다.
  • 분철상품 주문 시 분철 작업으로 인해 기존 도착 예정일에 2일 정도 추가되며, 당일 배송, 해외 배송이 불가합니다.

해외주문 시 유의사항

  • 해외주문도서는 해외 거래처 사정에 의해 품절/지연될 수 있습니다.

Special order 주문 시 유의사항

  • 스페셜오더 도서나 일서 해외 주문 도서와 함께 주문 시 배송일이 이에 맞추어 지연되오니, 이점 유의해 주시기 바랍니다.

바로드림존에서 받기

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상 시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함 되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해 주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반 코너에서 수령확인이 가능합니다
  • 선물 받는 분의 휴대폰번호만 입력하신 후 결제하시면 받는 분 휴대폰으로 선물번호가 전달됩니다.
  • 문자를 받은 분께서는 마이 > 주문관리 > 모바일 선물내역 화면에서 선물번호와 배송지 정보를 입력하시면 선물주문이 완료되어 상품준비 및 배송이 진행됩니다.
  • 선물하기 결제하신 후 14일까지 받는 분이 선물번호를 등록하지 않으실 경우 주문은 자동취소 됩니다.
  • 또한 배송 전 상품이 품절 / 절판 될 경우 주문은 자동취소 됩니다.

바로드림 서비스 안내

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.
  1. STEP 01
    픽업박스에서 찾기 주문
  2. STEP 02
    도서준비완료 후 휴대폰으로 인증번호 전송
  3. STEP 03
    매장 방문하여 픽업박스에서 인증번호 입력 후 도서 픽업
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.

도서 소득공제 안내

  • 도서 소득공제란?

    • 2018년 7월 1일 부터 근로소득자가 신용카드 등으로 도서구입 및 공연을 관람하기 위해 사용한 금액이 추가 공제됩니다. (추가 공제한도 100만원까지 인정)
      • 총 급여 7,000만 원 이하 근로소득자 중 신용카드, 직불카드 등 사용액이 총급여의 25%가 넘는 사람에게 적용
      • 현재 ‘신용카드 등 사용금액’의 소득 공제한도는 300만 원이고 신용카드사용액의 공제율은 15%이지만, 도서·공연 사용분은 추가로 100만 원의 소득 공제한도가 인정되고 공제율은 30%로 적용
      • 시행시기 이후 도서·공연 사용액에 대해서는 “2018년 귀속 근로소득 연말 정산”시기(19.1.15~)에 국세청 홈택스 연말정산간소화 서비스 제공
  • 도서 소득공제 대상

    • 도서(내서,외서,해외주문도서), eBook(구매)
    • 도서 소득공제 대상 상품에 수반되는 국내 배송비 (해외 배송비 제외)
      • 제외상품 : 잡지 등 정기 간행물, 음반, DVD, 기프트, eBook(대여,학술논문), 사은품, 선물포장, 책 그리고 꽃
      • 상품정보의 “소득공제” 표기를 참고하시기 바랍니다.
  • 도서 소득공제 가능 결제수단

    • 카드결제 : 신용카드(개인카드에 한함)
    • 현금결제 : 예치금, 교보e캐시(충전에한함), 해피머니상품권, 컬쳐캐쉬, 기프트 카드, 실시간계좌이체, 온라인입금
    • 간편결제 : 교보페이, 네이버페이, 삼성페이, 카카오페이, PAYCO, 토스, CHAI
      • 현금결제는 현금영수증을 개인소득공제용으로 신청 시에만 도서 소득공제 됩니다.
      • 교보e캐시 도서 소득공제 금액은 교보eBook > e캐시 > 충전/사용내역에서 확인 가능합니다.
      • SKpay, 휴대폰 결제, 교보캐시는 도서 소득공제 불가
  • 부분 취소 안내

    • 대상상품+제외상품을 주문하여 신용카드 "2회 결제하기"를 선택 한 경우, 부분취소/반품 시 예치금으로 환원됩니다.

      신용카드 결제 후 예치금으로 환원 된 경우 승인취소 되지 않습니다.

  • 도서 소득공제 불가 안내

    • 법인카드로 결제 한 경우
    • 현금영수증을 사업자증빙용으로 신청 한 경우
    • 분철신청시 발생되는 분철비용

알림 신청

아래의 알림 신청 시 원하시는 소식을 받아 보실 수 있습니다.
알림신청 취소는 마이룸 > 알림신청내역에서 가능합니다.

일래스틱 스택을 이용한 머신러닝
머신러닝 피처로 데이터에서 귀중한 인사이트를 얻자
2 판
한달 후 리뷰
/ 좋았어요
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 올해 주식 투자를 시작했다. 아무것도 모르고 초심자의 행운으로 분유값 정도를 벌고 나니, 조금 더 공부해보고 싶어져서 『초격차 투자법』을 구매했다.
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
기대가됩니다~
기대가됩니다~
기대가됩니다~
이 구매자의 첫 리뷰 보기
/ 좋았어요
하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까 예견해 본다. 책한권으로 등의 근육들이 오그라진 느낌에 아직도 느껴진다. 하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이 처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까..
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
신고

신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.

허위 신고일 경우, 신고자의 서비스 활동이 제한될 수 있으니 유의하시어
신중하게 신고해주세요.

판형알림

  • A3 [297×420mm]
  • A4 [210×297mm]
  • A5 [148×210mm]
  • A6 [105×148mm]
  • B4 [257×364mm]
  • B5 [182×257mm]
  • B6 [128×182mm]
  • 8C [8절]
  • 기타 [가로×세로]
EBS X 교보문고 고객님을 위한 5,000원 열공 혜택!
자세히 보기