본문 바로가기

추천 검색어

실시간 인기 검색어

Must Have 데싸노트의 실전에서 통하는 머신러닝

피처 엔지니어링 + TOP 10 알고리즘 + | 실무 노하우로 익히는 실무형 문제풀이 해법서
권시현 저자(글)
골든래빗(주) · 2022년 07월 08일
10.0 (6개의 리뷰)
최고예요 (50%의 구매자)
  • 데싸노트의 실전에서 통하는 머신러닝 대표 이미지
    데싸노트의 실전에서 통하는 머신러닝 대표 이미지
  • A4
    사이즈 비교
    210x297
    183x235
    단위 : mm
MD의 선택 무료배송 이벤트 소득공제
10% 30,600 34,000
적립/혜택
1,700P

기본적립

5% 적립 1,700P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,700P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서만 15,000원 이상 구매 시 무료배송
도서+교보Only(교보배송)을 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
주문정보를 불러오는 중입니다.
서울시 종로구 종로 1

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

패키지

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

데싸노트의 실전에서 통하는 머신러닝 상세 이미지
★ 실전은 피처 엔지니어링이다
★ 뉴욕의 데이터 사이언티스트가 알려주는
★ 머신러닝 문제풀이 해법을 익혀라
이 책은 실무와 캐글 챌린지에도 통하는 10가지 각 알고리즘을 엄선해 머신러닝을 알려줍니다. 콜롬비아 대학교 대학원생 튜터로, 패스트캠퍼스 데이터분석 강사와 스터디 리더로 활동한 저자는 데이터 분석을 바탕으로 한 코딩에 집중할 때 학습 능률이 더 오르는 것을 발견했습니다. 그래서 각 알고리즘을 ‘기초 지식 ? 데이터 분석 ? 전처리 ? 모델링 평가 ? 알고리즘 깊이 이해하기’ 순서로 격파해나갑니다. 무엇보다 더 나은 성과를 얻는 핵심 기술인 데이터를 분석하고 처리하는 피처 엔지니어링에 공을 들였습니다. 이 책을 읽고 나면 독자 스스로가 데이터에 알맞은 문제풀이 해법을 고안할 수 있게 될 겁니다.

* 이 책은 객체지향 개념이 있는 프로그래밍 언어를 적어도 하나를 익힌 분을 대상으로 합니다. 파이썬은 1장에서 알려주므로 몰라도 됩니다.

작가정보

저자(글) 권시현

데싸노트
삼성전자에 마케팅 직군으로 입사하여 앱스토어 결제 데이터를 운영 및 관리했습니다. 데이터에 관심이 생겨 미국으로 유학을 떠나 지금은 모바일 서비스 업체 IDT에서 데이터 사이언티스트로 일합니다. 문과 출신이 미국 현지 데이터 사이언티스트가 되기까지 파이썬과 머신러닝을 배우며 많은 시행착오를 겪었습니다. 제가 겪었던 시행착오를 덜어드리고, 머신러닝에 대한 재미를 전달하고자 유튜버로 활동하고 책을 집필합니다.

현) IDT Corporation (미국 모바일 서비스 업체) 데이터 사이언티스트
전) 콜롬비아 대학교, Machine Learning Tutor, 대학원생 대상
전) 콜롬비아 대학교, Big Data Immersion Program Teaching Assistant
전) 콜롬비아 대학교, M.S. in Applied Analytics
전) 삼성전자 무선사업부, 스마트폰 데이터 분석가
전) 삼성전자 무선사업부, 모바일앱 스토어 데이터 관리 및 운영

강의 경력
● 패스트캠퍼스 〈파이썬을 활용한 이커머스 데이터 분석 입문〉

SNS
● www.youtube.com/c/데싸노트

목차

  • 00장 실습 환경 안내(코랩)

    1단계 : 배경지식 익히기

    01장 한눈에 살펴보는 머신러닝
    __1.1 인공지능, 머신러닝, 딥러닝
    __1.2 머신러닝 기법 : 지도 학습, 비지도 학습, 강화 학습
    __1.3 머신러닝 프로세스
    __1.4 TOP 10 알고리즘의 성능 비교
    __1.5 머신러닝 핵심 라이브러리
    __1.6 데이터 시각화 그래프 종류
    __1.7 피처 엔지니어링 기법
    __1.8 변수란 무엇인가?
    학습 마무리

    02장 파이썬 기초 익히기
    __2.1 프로그래밍 기본 : 산술 연산, 변수, 출력
    __2.2 자료형과 자료구조
    __2.3 반복문 : for문, while문
    __2.4 조건문 : if문
    __2.5 파이썬 내장 함수
    __2.6 나만의 함수 만들기 : def
    학습 마무리

    03장 유용한 라이브러리 : 판다스와 넘파이
    __3.1 판다스
    __3.2 넘파이
    학습 마무리


    2단계 : 답을 알려줘야 학습하는 머신러닝 지도학습 알고리즘

    04장 선형 회귀 : 보험료 예측하기
    __4.1 문제 정의 : 한눈에 보는 예측 목표
    __4.2 라이브러리 및 데이터 불러오기
    __4.3 데이터 확인하기
    __4.4 전처리 : 학습셋과 시험셋 나누기
    __4.5 모델링
    __4.6 모델을 활용해 예측하기
    __4.7 예측 모델 평가하기
    __4.8 이해하기 : 선형 회귀
    학습 마무리
    연습 문제

    05장 로지스틱 회귀 : 타이타닉 생존자 예측하기
    __5.1 문제 정의 : 한눈에 보는 예측 목표
    __5.2 라이브러리 및 데이터 불러오기
    __5.3 데이터 확인하기
    __5.4 전처리 : 범주형 변수 변환하기(더미 변수와 원-핫 인코딩)
    __5.5 모델링 및 예측하기
    __5.6 예측 모델 평가하기
    __5.7 이해하기 : 피처 엔지니어링
    __5.8 이해하기 : 로지스틱 회귀
    학습 마무리
    연습 문제

    06장 K-최근접 이웃(KNN) : 와인 등급 예측하기
    __6.1 문제 정의 : 한눈에 보는 예측 목표
    __6.2 라이브러리 및 데이터 불러오기
    __6.3 데이터 확인하기
    __6.4 목푯값에서 고윳값 확인하기
    __6.5 전처리 : 결측치 처리하기
    __6.6 스케일링
    __6.7 모델링 및 예측/평가하기
    __6.8 하이퍼파라미터 튜닝하기
    __6.9 이해하기 : K-최근접 이웃
    학습 마무리
    연습 문제

    07장 나이브 베이즈 : 스팸 여부 판단하기
    __7.1 문제 정의 : 한눈에 보는 예측 목표
    __7.2 라이브러리 및 데이터 불러오기 & 데이터 확인
    __7.3 전처리 : 특수 기호 제거하기
    __7.4 전처리 : 불용어 제거하기
    __7.5 전처리 : 목표 컬럼 형태 변경하기
    __7.6 전처리 : 카운트 기반으로 벡터화하기
    __7.7 모델링 및 예측/평가하기
    __7.8 이해하기 : 나이브 베이즈 모델
    학습 마무리
    연습 문제

    08장 결정 트리 : 연봉 예측하기
    __8.1 문제 정의 : 한눈에 보는 예측 목표
    __8.2 라이브러리 및 데이터 불러오기, 데이터 확인하기
    __8.3 전처리 : 범주형 데이터
    __8.4 전처리 : 결측치 처리 및 더미 변수 변환
    __8.5 모델링 및 평가하기
    __8.6 이해하기 : 결정 트리
    __8.7 오버피팅 문제
    __8.8 매개변수 튜닝
    __8.9 트리 그래프
    학습 마무리
    연습 문제

    09장 랜덤 포레스트 : 중고차 가격 예측하기
    __9.1 문제 정의 : 한눈에 보는 예측 목표
    __9.2 라이브러리 및 데이터 불러오기, 데이터 확인하기
    __9.3 전처리 : 텍스트 데이터
    __9.4 전처리 : 결측치 처리와 더미 변수 변환
    __9.5 모델링 및 평가하기
    __9.6 이해하기 : K-폴드 교차검증
    __9.7 이해하기 : 랜덤 포레스트
    __9.8 하이퍼파라미터 튜닝
    학습 마무리
    연습 문제

    10장 XGBoost : 커플 성사 여부 예측하기
    __10.1 문제 정의 : 한눈에 보는 예측 목표
    __10.2 라이브러리 및 데이터 불러오기, 데이터 확인하기
    __10.3 전처리 : 결측치 처리
    __10.4 전처리 : 피처 엔지니어링
    __10.5 모델링 및 평가
    __10.6 이해하기 : 경사하강법
    __10.7 하이퍼파라미터 튜닝 : 그리드 서치
    __10.8 중요 변수 확인
    __10.9 이해하기 : XGBoost
    학습 마무리
    연습 문제

    11장 LightGBM : 이상거래 예측하기
    __11.1 문제 정의 : 한눈에 보는 예측 목표
    __11.2 라이브러리 및 데이터 불러오기, 데이터 확인하기
    __11.3 전처리 : 데이터 클리닝
    __11.4 전처리 : 피처 엔지니어링
    __11.5 모델링 및 평가하기
    __11.6 하이퍼파라미터 튜닝 : 랜덤 그리드 서치
    __11.7 LightGBM의 train( ) 함수 사용하기
    __11.8 이해하기 : LightGBM
    학습 마무리
    연습 문제


    3단계 : 답을 스스로 찾는 비지도학습 알고리즘

    12장 K-평균 군집화 : 비슷한 속성끼리 분류하기
    __12.1 문제 정의 : 한눈에 보는 예측 목표
    __12.2 K-평균 군집화 맛보기 : 인위적으로 만든 데이터셋
    __12.3 데이터 불러오기 및 데이터 확인하기 : 고객 데이터셋
    __12.4 전처리 : 피처 엔지니어링
    __12.5 고객 데이터 모델링 및 실루엣 계수
    __12.6 최종 예측 모델 및 결과 해석
    __12.7 이해하기 : K-평균 군집화
    학습 마무리
    연습 문제

    13장 주성분 분석(PCA) : 차원 축소 응용하기
    __13.1 차원을 축소해서 그래프 그리기 : 고객 데이터셋
    __13.2 속도와 예측력을 향상시키기 : 익명 데이터셋
    __13.3 이해하기 : 주성분 분석
    학습 마무리
    연습 문제

추천사

  • “머신러닝 알고리즘을 배우다 보면 배울 게 끝이 없어 보입니다. 이 책에 그 고민을 덜어줄 10개의 알고리즘이 엄선되어 있습니다. 10개의 예제를 통해 실습을 하다 보면 핵심 알고리즘과 필수적으로 알아야 할 기법을 ‘Learning By Doing’으로 배우게 됩니다.”

  • “친절한 책입니다. 입문자의 눈높이에 맞추었지만 실무에서 진행될 법한 데이터 파악과 전처리 과정부터 시작해 알고리즘으로 나아가는 구성은 막 실무를 시작한 분에게도 알맞을 듯하네요. 전처리의 중요성을 새삼 느꼈습니다. 머신러닝 기본, 그리고 핵심 알고리즘 설명에 충실합니다. 흥미로운 예제와 데이터로 구성되어 있어 한 장 한 장이 새롭고 기다려지는 책이었습니다.”

  • “머신러닝 알고리즘을 이해하고 실제 적용하는 일은 지루하고 어렵습니다. 이 책에 나오는 문제해결 과정을 따라 하다 보면 왜 이렇게 하는지에 익숙해지고 필요한 기법을 빠르게 학습할 수 있습니다. 이 책을 통해 머신러닝을 빠르게 익히고 실무에 적용해보면서 더욱 발전하는 자신을 경험해보시기 바랍니다.”

  • “머신러닝이 무엇인지 확실히 개념을 익히실 수 있습니다. 개념뿐만 아니라 가장 많이 사용되는 10가지 머신러닝 기법을 예제와 코드를 통해 익히고 나서 앞으로 무엇을 더 공부하면 좋을지 스스로 터득할 수 있게 하는 길잡이 같은 책입니다.”

  • “머신러닝 공부를 이제 막 시작하는 입문자 또는 머신러닝 알고리즘 학습에 어려움을 겪고 있는 개발자에게 추천합니다. 복잡한 수식보다는 이해하기 쉬운 예시와 예제, 그리고 이해를 돕는 그림으로 설명합니다. 파이썬 지식이 없는 사람을 위한 문법도 설명하고 있어 독학하기 좋습니다.”

  • “머신러닝을 부담없이 시작할 수 있는 책입니다. 시작은 가벼웠지만 마지막 페이지를 덮을 때에는 많은 것을 얻어갈 겁니다. 이론으로는 몇 번이나 읽어봐도 알쏭달쏭한 머신러닝 개념을 예제를 통해 다질 수 있습니다. 저자가 제시하는 코드와 설명을 따라가다 보면 혼자서는 버거웠을 의미를 해석할 수 있게 됩니다. 이 책은 인터넷 강의에 버금가는 강의력이 있습니다. 덕분에 많은 시간을 절약해 머신러닝을 배울 수 있습니다.”

  • “데싸노트님의 영상을 본 사람이라면 알겠지만, 어려운 이론보다도 우선 코드부터, 예제부터 실행해보기를 권합니다. 이 책 역시 복잡한 설명보다 코드를 이용해서 감각을 키우는 훈련을 시켜줍니다. 이 책을 통해 머신러닝과 조금 더 친해질 수 있을 거라고 생각합니다.”

  • “많은 분이 전공자가 아님에도 여러 방법으로 데이터 과학자에 도전합니다만 알아야 할 지식이 많아서 정말 쉽지가 않습니다. 이 책은 첫 단계를 비교적 쉽게 넘어갈 방법을 알려줍니다. 코드를 따라서 입력하고 설명을 읽으면 조금씩 길이 보입니다. 많은 분께 도움이 될 거라고 생각합니다.”

  • “이 책을 한 줄로 요약하자면 ‘Learning By Doing’이라고 할 수 있습니다. 파이썬 입문자부터 머신러닝 알고리즘을 되짚어보고 싶은 현업 개발자까지, 모두에게 이 책을 추천합니다. 배우기 전에 실행하고, 실행하는 과정에서 배움에 대한 두려움을 없앨 수 있을 겁니다.”

  • “머신러닝 모델들의 개념을 쉽게 익힐 수 있게 허들을 낮춘 책입니다. 입문자들이 모델 개념을 이해하고, 실제로 적용해볼 수 있도록 코드를 제공해 쉽게 실습해볼 수 있습니다. 생각날 때마다 찾아볼 수 있는 레퍼런스용으로도 좋습니다.”

  • “복잡한 머신러닝 알고리즘이 많지만 실무에 적용되는 알고리즘은 많지 않습니다. 이 책은 우수한 성능과 다양한 활용 사례로 유명한 10가지 머신러닝 알고리즘을 소개합니다. 알고리즘 개념에 대한 올바른 이해와 코드 실습을 통해 실무에 빠르게 머신러닝을 적용할 수 있게 돕는 입문서 겸 활용서입니다.”

  • “인공지능 분야에서 첫 걸음마를 뗀 분들부터 오랜 시간 현업에서 종사하시는 분들에게 추천드립니다. 체계적으로 입문하는 용도로도 좋지만, 오랜 시간 실무에 집중하다가 기본을 다시 확인하고 정립하는 용도로도 좋습니다. 저도 인공지능 분야에서 종사하지만, 이 책을 통해 제가 놓치고 있던 부분을 채우는 시간을 가질 수 있었습니다. 다음에 다시 읽을 때도 같은 내용이지만 또 다른 부분을 채울 거라고 생각합니다. 인공지능의 세상에서 다음 스텝으로 넘어가기 전에 걸어오셨던 길을 이 책을 통해서 다시금 돌아보시길 바라봅니다.”

출판사 서평

★ 뉴욕의 데이터 사이언티스트 데싸노트가 전하는
★ 이 책으로 머신러닝을 익혀야 하는 이유

이 책은 기존 책과 큰 차이가 있습니다. 상세한 이론 설명을 코딩을 마친 후로 미루고, 일단 머신러닝 코드를 작성합니다. 그저 코드를 따라 치는 게 아니라 어떤 관점에서 문제를 풀어나가야 하는지 설명을 보태 실무에도 적용할 수 있게 했습니다. 이렇게 손으로 결과물을 만들어보고 나서 이론을 깊게 살펴봅니다. 전체 과정을 다시금 머리에 상기시키고, 핵심 개념과 용어를 복습합니다.

이런 식으로 TOP 10 알고리즘을 모두 학습하고 나면, 머신러닝 알고리즘에 대한 이해뿐만 아니라, 파이썬 코딩에 대한 기초 지식도 자연스럽게 갖출 수 있습니다. 무엇보다 큰 장점은, 결과물을 바로 확인하고 본인이 무엇을 하고 있는지 직관적으로 알 수 있기 때문에, 의욕을 고취시킨다는 데 있습니다.

★ 현업과 캐글에서 머신러닝을 활용하려면
★ 얼마나 많은 머신러닝 알고리즘을 알아야 하는 걸까요?
시작점으로 TOP 10 알고리즘이면 충분합니다. 알고리즘은 달라도 머신러닝 실행 순서는 학습 → 예측 → 평가로 진행됩니다. 이 부분은 거의 정형화되어 있어 성능에 큰 영향을 미치지 않습니다. 쓰레기가 들어가면 쓰레기가 나온다고 합니다. 머신러닝에 딱맞는 말입니다. 좋은 데이터가 좋은 머신러닝 모델을 만듭니다. 그래서 이 책은 TOP 10 알고리즘을 공략하면서 무엇보다 데이터 분석과 가공에 공을 들입니다. 데이터에 어떤 가공 기법이 필요한지 하나하나 분석하며 클리닝, 피처 엔지니어링, 차원 축소 등의 기법을 사용할 겁니다. 이렇게 데이터 분석 능력을 기르며 알고리즘을 익히면 현업과 캐글에서도 통하는 실력을 갖추게 됩니다.

★ 타깃 독자
__적어도 객체지향 프로그래밍 언어 하나를 아는 머신러닝 입문자
__머신러닝을 협업/캐글에서 더 잘 활용하고 싶은 데이터 사이언티스트와 개발자

★ 톱 10 알고리즘의 선정 기준
이 책은 10가지 머신러닝 알고리즘을 다룹니다. 어떤 알고리즘은 성능면에서 매우 뛰어나서, 어떤 알고리즘은 꼭 이해할 필요가 있어서 선택했습니다. 8가지 알고리즘은 지도 학습, 나머지 2가지 알고리즘은 비지도 학습에 포함됩니다. 정형 데이터라면, 이 10가지 알고리즘만으로 현업과 캐글 컴피티션에서 충분히 좋은 성과를 낼 수 있습니다.

▽ 머신러닝 TOP 알고리즘
__1. 선형 회귀(Linear Regression)
__2. 로지스틱 회귀(Logistic Regression)
__3. K-최근접 이웃(KNN)
__4. 나이브 베이즈(Naive Bayes)
__5. 결정 트리(Decision Tree)
__6. 랜덤 포레스트(Random Forest)
__7. XG부스트(XGBoost)
__8. 라이트GBM(LightGBM)
__9. K-평균 군집화(K Means Clustering)
__10. 주성분 분석(PCA)

★ 이 책의 구성
이 책은 학습 흐름을 끊지 않기 위해 개발 환경(코랩)부터 설명한 후, 다음과 같이 총 3단계에 걸쳐 머신러닝 알고리즘을 공략해나갑니다

[1단계 : 배경지식 익히기]
머신러닝을 본격적으로 다루기 전에 알아야 하는 기초 지식을 다룹니다. 1장에서는 머신러닝 알고리즘, 그래프, 라이브러리를 일목요연하게 소개합니다. 머신러닝 입문자가 큰 그림을 파악하는 데 도움이 될 겁니다. 이어서 프로그래밍에 사용할 파이썬 기본 지식(2장), 데이터 분석에 사용할 데이터 구조인 판다스와 넘파이(3장)도 다룹니다.

[2단계 : 답을 알려줘야 학습하는 지도학습 알고리즘]
지도 학습과 관련된 8가지 알고리즘을 알아봅니다. 지도 학습은 학습 데이터에 답(종속변수)이 포함되어 있습니다. 그 답을 잘 예측할 수 있도록 모델을 훈련시키는 방법을 문제해결 관점에서 알아보겠습니다. 가장 기초 알고리즘인 선형 회귀부터 캐글 컴피티션 및 실무에서도 유용한 최신 기법인 XGBoost와 LightGBM까지 폭넓게 다룹니다.

[3단계 : 답을 스스로 찾는 비지도학습 알고리즘]
비지도 학습 알고리즘 두 개를 다룹니다. 비지도 학습은 답이 주어져 있지 않다 보니, 학습 결과가 좋은지 나쁜지 평가할 만한 답안 또한 가지고 있지 않아서 목적이 모호할 수 있습니다. 그래서 다양한 시도를 할 때 활용될 수 있습니다. 지도 학습과 달리 비지도 학습에서 압도적으로 많이 사용되는 알고리즘이 한정적입니다. 그래서 가장 유명한 두 알고리즘만 다룹니다.

기본정보

상품정보
ISBN 9791191905137
발행(출시)일자 2022년 07월 08일
쪽수 464쪽
크기
183 * 235 * 27 mm / 922 g
총권수 1권

Klover

Klover 리뷰 안내
교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
리워드 안내
구매 후 90일 이내에 평점과 10자 이상의 리뷰 작성 시 e교환권 200원을 적립해 드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
판매가 1,000원 미만 도서의 경우 리워드 지급 대상에서 제외됩니다.
한달 후 리뷰
구매 후 30일~ 120일 이내에 작성된 두 번째 구매리뷰에 대해 한 달 후 리뷰로 인지하고 e교환권 100원을 추가 제공합니다.
운영 원칙 안내
Klover 리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

리뷰는 1인이 중복으로 작성하실 수는 있지만, 평점계산은 가장 최근에 남긴 1건의 리뷰만 반영됩니다.
신고하기
다른 고객이 작성리뷰에 대해 불쾌함을 느끼는 경우 신고를 할 수 있으며, 신고 자가 일정수준 이상 누적되면 작성하신 리뷰가 노출되지 않을 수 있습니다.

구매 후 리뷰 작성 시, e교환권 200원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
TOP

저자 모두보기

저자(글)

매장별 재고 및 위치

할인쿠폰 다운로드

  • 쿠폰은 주문결제화면에서 사용 가능합니다.
  • 다운로드한 쿠폰은 마이 > 혜택/포인트 에서 확인 가능합니다.
  • 도서정가제 적용 대상 상품에 대해서는 정가의 10%까지 쿠폰 할인이 가능합니다.
  • 도서정가제 적용 대상 상품에 10% 할인이 되었다면, 해당 상품에는 사용하실 수
    없습니다.

적립예정포인트 안내

  • 통합포인트 안내

    • 통합포인트는 교보문고(인터넷, 매장), 핫트랙스(인터넷, 매장), 모바일 교보문고 등 다양한 곳에서 사용하실 수 있습니다.
    • 상품 주문 시, 해당 상품의 적립률에 따라 적립 예정 포인트가 자동 합산되고 주문하신 상품이 발송완료 된 후에 자동으로 적립됩니다.
    • 단, 쿠폰 및 마일리지, 통합포인트, e교환권 사용 시 적립 예정 통합포인트가 변동될 수 있으며 주문취소나 반품시에는 적립된 통합포인트가 다시 차감됩니다.
  • 통합포인트 적립 안내

    • 통합포인트는 도서정가제 범위 내에서 적용됩니다.
    • 추가적립 및 회원 혜택은 도서정가제 대상상품(국내도서, eBook등)으로만 주문시는 해당되지 않습니다.
  • 기본적립) 상품별 적립금액

    • 온라인교보문고에서 상품 구매시 상품의 적립률에 따라 적립됩니다.
    • 단 도서정가제 적용 대상인 국내도서,eBook은 15%내에서 할인율을 제외한 금액내로 적립됩니다.
  • 추가적립) 5만원 이상 구매시 통합포인트 2천원 추가적립

    • 5만원 이상 구매시 통합포인트 2천원 적립됩니다.
    • 도서정가제 예외상품(외서,음반,DVD,잡지(일부),기프트) 2천원 이상 포함시 적립 가능합니다.
    • 주문하신 상품이 전체 품절인 경우 적립되지 않습니다.
  • 회원혜택) 3만원이상 구매시 회원등급별 2~4% 추가적립

    • 회원등급이 플래티넘, 골드, 실버 등급의 경우 추가적립 됩니다.
    • 추가적립은 실결제액 기준(쿠폰 및 마일리지, 통합포인트, e교환권 사용액 제외) 3만원 이상일 경우 적립됩니다.
    • 주문 후 취소,반품분의 통합포인트는 단품별로 회수되며, 반품으로 인해 결제잔액이 3만원 미만으로 변경될 경우 추가 통합포인트는 전액 회수될 수 있습니다.

제휴 포인트 안내

제휴 포인트 사용

  • OK CASHBAG 10원 단위사용 (사용금액 제한없음)
  • GS&POINT 최대 10만 원 사용
더보기

구매방법 별 배송안내

배송 일정 안내

  • 출고 예정일은 주문상품의 결제(입금)가 확인되는 날 기준으로 상품을 준비하여 상품 포장 후 교보문고 물류센터에서 택배사로 전달하게 되는 예상 일자입니다.
  • 도착 예정일은 출고 예정일에서 택배사의 배송일 (약1~2일)이 더해진 날이며 연휴 및 토, 일, 공휴일을 제외한 근무일 기준입니다.
배송 일정 안내
출고예정일 도착예정일
1일이내 상품주문 후 2~3일 이내
2일이내 상품주문 후 3~4일 이내
3일이내 상품주문 후 4~5일 이내
4일이내 상품주문 후 5~6일 이내

연휴 및 토, 일, 공휴일은 제외됩니다.

당일배송 유의사항

  • 수도권 외 지역에서 선물포장하기 또는 사은품을 포함하여 주문할 경우 당일배송 불가
  • 회사에서 수령할 경우 당일배송 불가 (퇴근시간 이후 도착 또는 익일 배송 될 수 있음)
  • 무통장입금 주문 후 당일 배송 가능 시간 이후 입금된 경우 당일 배송 불가
  • 주문 후 배송지 변경 시 변경된 배송지에 따라 익일 배송될 수 있습니다.
  • 수도권 외 지역의 경우 효율적인 배송을 위해 각 지역 매장에서 택배를 발송하므로, 주문 시의 부록과 상이할 수 있습니다.
  • 각 지역 매장에서 재고 부족 시 재고 확보를 위해 당일 배송이 불가할 수 있습니다.

일반배송 시 유의사항

  • 날씨나 택배사의 사정에 따라 배송이 지연될 수 있습니다.
  • 수도권 외 지역 바로배송 서비스의 경우 경품 수령 선택 여부에 따라 도착 예정일이 변경됩니다.
  • 출고 예정일이 5일 이상인 상품의 경우(결제일로부터 7일 동안 미입고), 출판사 / 유통사 사정으로 품/절판 되어 구입이 어려울 수 있습니다. 이 경우 SMS, 메일로 알려드립니다.
  • 선물포장 주문 시 합배송 처리되며, 일부상품 품절 시 도착 예정일이 늦어질 수 있습니다.
  • 분철상품 주문 시 분철 작업으로 인해 기존 도착 예정일에 2일 정도 추가되며, 당일 배송, 해외 배송이 불가합니다.

해외주문 시 유의사항

  • 해외주문도서는 해외 거래처 사정에 의해 품절/지연될 수 있습니다.

Special order 주문 시 유의사항

  • 스페셜오더 도서나 일서 해외 주문 도서와 함께 주문 시 배송일이 이에 맞추어 지연되오니, 이점 유의해 주시기 바랍니다.

바로드림존에서 받기

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상 시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함 되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해 주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반 코너에서 수령확인이 가능합니다
  • 선물 받는 분의 휴대폰번호만 입력하신 후 결제하시면 받는 분 휴대폰으로 선물번호가 전달됩니다.
  • 문자를 받은 분께서는 마이 > 주문관리 > 모바일 선물내역 화면에서 선물번호와 배송지 정보를 입력하시면 선물주문이 완료되어 상품준비 및 배송이 진행됩니다.
  • 선물하기 결제하신 후 14일까지 받는 분이 선물번호를 등록하지 않으실 경우 주문은 자동취소 됩니다.
  • 또한 배송 전 상품이 품절 / 절판 될 경우 주문은 자동취소 됩니다.

바로드림 서비스 안내

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.
  1. STEP 01
    픽업박스에서 찾기 주문
  2. STEP 02
    도서준비완료 후 휴대폰으로 인증번호 전송
  3. STEP 03
    매장 방문하여 픽업박스에서 인증번호 입력 후 도서 픽업
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.

도서 소득공제 안내

  • 도서 소득공제란?

    • 2018년 7월 1일 부터 근로소득자가 신용카드 등으로 도서구입 및 공연을 관람하기 위해 사용한 금액이 추가 공제됩니다. (추가 공제한도 100만원까지 인정)
      • 총 급여 7,000만 원 이하 근로소득자 중 신용카드, 직불카드 등 사용액이 총급여의 25%가 넘는 사람에게 적용
      • 현재 ‘신용카드 등 사용금액’의 소득 공제한도는 300만 원이고 신용카드사용액의 공제율은 15%이지만, 도서·공연 사용분은 추가로 100만 원의 소득 공제한도가 인정되고 공제율은 30%로 적용
      • 시행시기 이후 도서·공연 사용액에 대해서는 “2018년 귀속 근로소득 연말 정산”시기(19.1.15~)에 국세청 홈택스 연말정산간소화 서비스 제공
  • 도서 소득공제 대상

    • 도서(내서,외서,해외주문도서), eBook(구매)
    • 도서 소득공제 대상 상품에 수반되는 국내 배송비 (해외 배송비 제외)
      • 제외상품 : 잡지 등 정기 간행물, 음반, DVD, 기프트, eBook(대여,학술논문), 사은품, 선물포장, 책 그리고 꽃
      • 상품정보의 “소득공제” 표기를 참고하시기 바랍니다.
  • 도서 소득공제 가능 결제수단

    • 카드결제 : 신용카드(개인카드에 한함)
    • 현금결제 : 예치금, 교보e캐시(충전에한함), 해피머니상품권, 컬쳐캐쉬, 기프트 카드, 실시간계좌이체, 온라인입금
    • 간편결제 : 교보페이, 네이버페이, 삼성페이, 카카오페이, PAYCO, 토스, CHAI
      • 현금결제는 현금영수증을 개인소득공제용으로 신청 시에만 도서 소득공제 됩니다.
      • 교보e캐시 도서 소득공제 금액은 교보eBook > e캐시 > 충전/사용내역에서 확인 가능합니다.
      • SKpay, 휴대폰 결제, 교보캐시는 도서 소득공제 불가
  • 부분 취소 안내

    • 대상상품+제외상품을 주문하여 신용카드 "2회 결제하기"를 선택 한 경우, 부분취소/반품 시 예치금으로 환원됩니다.

      신용카드 결제 후 예치금으로 환원 된 경우 승인취소 되지 않습니다.

  • 도서 소득공제 불가 안내

    • 법인카드로 결제 한 경우
    • 현금영수증을 사업자증빙용으로 신청 한 경우
    • 분철신청시 발생되는 분철비용

알림 신청

아래의 알림 신청 시 원하시는 소식을 받아 보실 수 있습니다.
알림신청 취소는 마이룸 > 알림신청내역에서 가능합니다.

Must Have 데싸노트의 실전에서 통하는 머신러닝
피처 엔지니어링 + TOP 10 알고리즘 + | 실무 노하우로 익히는 실무형 문제풀이 해법서
한달 후 리뷰
/ 좋았어요
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 올해 주식 투자를 시작했다. 아무것도 모르고 초심자의 행운으로 분유값 정도를 벌고 나니, 조금 더 공부해보고 싶어져서 『초격차 투자법』을 구매했다.
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
기대가됩니다~
기대가됩니다~
기대가됩니다~
이 구매자의 첫 리뷰 보기
/ 좋았어요
하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까 예견해 본다. 책한권으로 등의 근육들이 오그라진 느낌에 아직도 느껴진다. 하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이 처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까..
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
신고

신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.

허위 신고일 경우, 신고자의 서비스 활동이 제한될 수 있으니 유의하시어
신중하게 신고해주세요.

판형알림

  • A3 [297×420mm]
  • A4 [210×297mm]
  • A5 [148×210mm]
  • A6 [105×148mm]
  • B4 [257×364mm]
  • B5 [182×257mm]
  • B6 [128×182mm]
  • 8C [8절]
  • 기타 [가로×세로]
EBS X 교보문고 고객님을 위한 5,000원 열공 혜택!
자세히 보기