케라스 창시자의 딥러닝 with R
도서+교보Only(교보배송)을 함께 15,000원 이상 구매 시 무료배송
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.
해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
패키지
북카드
키워드 Pick
키워드 Pick 안내
관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

작가정보
캘리포니아 마운틴 뷰의 구글에서 딥러닝과 관련된 일을 한다. 케라스 딥러닝 라이브러리의 창시자이고 텐서플로 머신러닝 프레임워크의 기여자다. 컴퓨터 비전과 형식 추론을 위한 머신러닝 애플리케이션에 초점을 맞춰 딥러닝을 연구한다.
저자(글) J. J. 알래어
알스튜디오(RStudio)를 설립하고 알스튜디오 통합개발환경(RStudio IDE)을 개발했다. 또한, 텐서플로 및 케라스에 대한 R 인터페이스를 개발하기도 했다.
번역 박진수
다양한 정보기술 분야 경력과 저술/번역 경험을 바탕으로 IT 융·복합 사업을 꿈꾸는, 1인 회사 ‘리율’의 대표다. 옮긴 책으로는 《모두를 위한 실용 전자공학》, 《해킹 일렉트로닉스》와 《ggplot2》 등이 있다.
목차
- 옮긴이 머리말
머리말
이 책의 내용
베타리더 후기
PART I 딥러닝 기초 1
CHAPTER 1 딥러닝이란 무엇인가? 3
1.1 인공지능, 머신러닝, 딥러닝 4
1.2 딥러닝을 하기 전에: 머신러닝의 간략한 역사 17
1.3 왜 딥러닝인가? 왜 지금인가? 24
CHAPTER 2 시작하기 전에: 신경망의 수학적 빌딩 블록 30
2.1 신경망 둘러보기 31
2.2 신경망에 대한 데이터 표현 36
2.3 신경망의 장비: 텐서 연산 44
2.4 신경망의 엔진: 경사 기반 최적화 52
2.5 첫 번째 예제 되돌아보기 60
2.6 요약 63
CHAPTER 3 신경망 입문 64
3.1 신경망 해부학 65
3.2 케라스 소개 69
3.3 딥러닝 워크스테이션 설정 73
3.4 영화 감상평 분류: 이항 분류 예제 76
3.5 뉴스 분류: 다중 클래스 분류 예제 89
3.6 주택 가격 예측: 회귀 예제 97
3.7 요약 105
CHAPTER 4 머신러닝의 기본 106
4.1 네 가지 머신러닝 106
4.2 머신러닝 모델 평가 110
4.3 데이터 전처리, 특징 공학 및 특징 학습 115
4.4 과적합 및 과소적합 119
4.5 머신러닝의 보편적인 작업 흐름 128
4.6 요약 134
PART II 딥러닝 실습 135
CHAPTER 5 컴퓨터 비전 처리를 위한 딥러닝 137
5.1 합성망 소개 137
5.2 소규모 데이터셋을 이용해 합성망을 처음부터 훈련하기 148
5.3 사전 훈련 합성망 사용하기 162
5.4 합성망이 학습한 내용 시각화하기 178
5.5 요약 197
CHAPTER 6 텍스트와 시퀀스에 대한 딥러닝 198
6.1 텍스트 데이터로 작업하기 199
6.2 재귀 신경망의 이해 216
6.3 재귀 신경망의 고급 사용 228
6.4 합성망을 사용한 시퀀스 처리 249
6.5 요약 257
CHAPTER 7 고급 딥러닝 모범 사례 259
7.1 순차 모델을 넘어: 케라스 함수형 API 259
7.2 케라스 콜백과 텐서보드로 딥러닝 모델을 검사하고 관찰하기 277
7.3 모델을 최대한 활용하기 287
7.4 요약 297
CHAPTER 8 생성적 딥러닝 298
8.1 LSTM을 사용한 문장 생성 300
8.2 딥드림 310
8.3 신경망 이용 화풍 모사 317
8.4 가변 오토인코더로 이미지 생성하기 327
8.5 생성적 적대 망 소개 337
8.6 요약 347
CHAPTER 9 결론 348
9.1 핵심 개념 검토 349
9.2 딥러닝의 한계 360
9.3 딥러닝의 미래 366
9.4 빠르게 변화하는 현장 따라잡기 373
9.5 맺는 말 375
APPENDIX A 우분투에서 케라스와 필요한 것들을 설치하기 376
A.1 설치 과정 개요 376
A.2 시스템 필수 구성 요소 설치 377
A.3 GPU 지원 설정 377
A.4 케라스 및 텐서플로 설치 380
APPENDIX B EC2 GPU 인스턴스에서 RStudio Server 실행하기 382
B.1 딥러닝용 AWS를 사용해야 하는 이유는 무엇인가? 382
B.2 딥러닝용 AWS를 사용하지 않는 이유는 무엇인가? 383
B.3 AWS GPU 인스턴스 설정 383
B.4 RStudio Server에 액세스하기 387
B.5 케라스 설치 389
찾아보기
책 속으로
머신러닝은 1990년대에 이르러서야 번성하기 시작했지만, 고속 처리 하드웨어와 대규모 데이터셋6을 활용할 수 있게 되면서 인공지능 하위 분야 중 가장 인기를 끌었다. 머신러닝은 수리통계학과 밀접한 관련이 있지만, 몇 가지 점에서 통계학과는 다른 면이 있다. 머신러닝은 통계학과 달리 베이즈 분석과 같은 고전적인 통계 분석에 효율적이지 못할 뿐만 아니라 복잡한 대규모 데이터셋(수백만 개 이미지 또는 각 이미지가 수십만 개 픽셀로 구성된 데이터셋)을 처리해야 하는 경향이 있다. _6p
그러면 케라스 및 텐서플로의 기본 CPU 기반 설치 내역이 제공된다. 딥러닝 워크스테이션 설정을 다룬 절에서 언급했듯이, 여러분은 아마도 GPU에서 딥러닝 모델을 훈련해 보기를 바랄 것이다. 엔비디아 GPU, 제대로 구성된 CUDA 및 cuDNN 라이브러리가 있는 시스템에서 실행하는 경우, 다음과 같이 텐서플로라는 백엔드 엔진의 GPU 기반 버전을 설치할 수 있다. _71p
이는 지도학습의 구체적인 사례이지만, 별도의 범주를 이룰 만큼 아주 다르다. 자기지도학습(self-supervised learning)은 사람이 주석을 첨부하지 않는 학습을 말한다. 학습 과정에 인간이 개입하지 않는 지도학습으로 생각할 수도 있다. 비지도학습에도 (학습은 뭔가에 의해 지도돼야 하기 때문에) 레이블이 포함돼 있기는 하지만, 레이블은 일반적으로 휴리스틱 알고리즘을 사용해 입력 데이터로부터 생성한다. _108p
합성망 예제에서는 모든 layer_max_pooling_2d 이후에 특징 지도의 크기가 절반으로 줄어든다. 예를 들어, 첫 번째 layer_max_pooling_2d 이전에 특징 지도는 26 × 26이지만, 최대 풀링 작업을 하고 나면 13 × 13이 돼 절반으로 줄어든다. 이것이 최대 풀링의 역할이다. 보폭 합성곱과 마찬가지로 특징 지도를 적극적으로 하향 표본 추출하는 것이다. _146p
이러한 루프(loop)와 상태(state)라는 개념을 명확히 하기 위해 R 언어를 이용해 간단한 RNN의 순전파(forward pass, 즉 ‘전방 전달’)를 구현해 보자. 이 RNN은 벡터들로 이뤄진 시퀀스를 입력으로 취한다. 벡터의 차원은 2D 텐서(timesteps, input_features)로 부호화된다. 시간대를 반복하고, 각 시간대에서 (input_features 모양으로 된) t 시점의 현재 상태와 입력을 고려해 이들을 결합함으로써 t에서 출력을 얻는다. 217p
케라스 구현에서 이러한 아이디어를 실제로 활용해 보자. 가장 먼저 필요한 것은 언어 모델을 익히는 데 사용할 수 있는 많은 텍스트 데이터이다. 임의의 큰 텍스트 파일이나 텍스트 파일 셋(위키피디아, 반지의 제왕 등)을 사용할 수 있다. 이 예에서는 19세기 후반 독일의 철학자 니체의 저술을 영어로 번역했다. 따라서 배울 수 있는 언어 모델은 구체적으로 영어의 일반적인 모델이 아닌 니체의 문체 및 주제의 모델이 될 것이다. _304p
출판사 서평
이 책의 주요 내용
■ 근본 가설들로부터의 딥러닝
■ 자신만의 딥러닝 환경 설정하기
■ 이미지 분류 및 생성하기
■ 텍스트 및 시퀀스에 대한 딥러닝
기본정보
ISBN | 9791188621460 | ||
---|---|---|---|
발행(출시)일자 | 2019년 02월 21일 | ||
쪽수 | 444쪽 | ||
크기 |
187 * 244
* 31
mm
/ 872 g
|
||
총권수 | 1권 | ||
시리즈명 |
제이팝의 인공지능 시리즈
|
||
원서명/저자명 | Deep Learning with R/Chollet, Francois |
Klover
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
판매가 1,000원 미만 도서의 경우 리워드 지급 대상에서 제외됩니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
리뷰는 1인이 중복으로 작성하실 수는 있지만, 평점계산은 가장 최근에 남긴 1건의 리뷰만 반영됩니다.
구매 후 리뷰 작성 시, e교환권 200원 적립
문장수집
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
구매 후 리뷰 작성 시, e교환권 100원 적립