본문 바로가기

추천 검색어

실시간 인기 검색어

그림과 수식으로 배우는 통통 딥러닝

| Paperback
제이펍의 인공지능 시리즈 4
야마시타 타카요시 저자(글) · 심효섭 번역
제이펍 · 2017년 06월 30일 출시
9.5 (5개의 리뷰)
도움돼요 (40%의 구매자)
  • 그림과 수식으로 배우는 통통 딥러닝 대표 이미지
    그림과 수식으로 배우는 통통 딥러닝 대표 이미지
  • A4
    사이즈 비교
    210x297
    172x225
    단위 : mm
MD의 선택 무료배송 사은품 이벤트 소득공제
10% 20,700 23,000
적립/혜택
1,150P

기본적립

5% 적립 1,150P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,150P
  • 리뷰 작성 시, e교환권 추가 최대 300원

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

절판되었습니다.

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

패키지

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

그림과 수식으로 배우는 통통 딥러닝 상세 이미지
딥러닝의 주요 개념을 컬러 그림을 통해 직관적으로 이해
이 책은 딥러닝의 개념을 소개하는 것으로 시작해 딥러닝에 사용되는 여러 기법을 안내하고 있다. 딥러닝을 처음 배우려는 입문자부터 연구하는 대학생, 실제로 연구개발을 하는 실무자까지 다양한 독자를 이해시키기 위해 그림과 수식을 사용했다. 입문자들은 수식과 함께 나오는 그림을 통해 이해를 높일 수 있을 것이다.

작가정보

저자 야마시타 타카요시(山下 隆義)는 1978년 고베에서 출생했으며, 1988년 고베시립공업고등전문학교 공학과를 졸업하였다. 2002년 나라첨단과학기술대학원대학교 정보과학연구과 박사전기과정을 수료하였고, 같은 해에 옴론 주식회사에 입사하였다. 옴론에서는 주로 영상에서 사람의 얼굴을 실시간으로 인식하는 소프트웨어의 연구와 개발을 담당하였다. 2011년에는 회사 근무와 병행하여 츄부대학 대학원 공학연구과 박사후기과정을 수료(공학박사)하였다. 2014년부터는 츄부대학 공학부 정보공학과 강사로 나가는 한편, 인간과 같은 인지를 지향하는 동영상 처리, 패턴 인식, 머신러닝 연구를 수행하고 있다. SSII 타카기상, IEICE 정보시스템학회 논문상, IEICE PRMU 연구회 연구장려상 등을 수상하였으며, SSII 및 MIRU 등에서 딥러닝 세미나의 강사도 맡고 있다.

번역 심효섭

역자 심효섭은 연세대학교 문헌정보학과를 졸업했고, 모교 중앙도서관과의 인연으로 도서관 솔루션 업체에서 일하게 되면서 개발을 시작하였다. 네이버에서는 웹 서비스 개발 업무를 맡았으며, 웹 서비스 외에도 머신러닝에 대한 학습도 꾸준히 하고 있다. 한편, 최근에는 회사에 속하지 않고 지속 가능한 삶에 골똘하고 있다. 옮긴 책으로는 《딥 러닝 제대로 시작하기》가 있다.

목차

  • CHAPTER 01 서론 1
    1.1 딥러닝이란 2
    1.2 주목받게 된 계기 3
    1.3 왜 딥러닝인가 6
    1.4 딥러닝이란 무엇인가 7
    1.5 이 책의 구성 8

    CHAPTER 02 신경망 11
    2.1 신경망의 역사 12
    2.2 매컬러-피츠의 신경회로망 모형 14
    2.3 퍼셉트론 16
    2.4 다층 퍼셉트론 18
    2.5 역전파법 19
    2.6 오차 함수와 활성화 함수 30
    2.7 우도 함수 32
    2.8 확률적 경사 하강법 33
    2.9 학습률 35
    2.10 정리 35

    CHAPTER 03 합성곱 신경망 37
    3.1 합성곱 신경망의 구성 38
    3.2 합성곱층 40
    3.3 풀링층 41
    3.4 전결합층 42
    3.5 출력층 43
    3.6 신경망의 학습 방법 43
    3.7 정리 50

    CHAPTER 04 제약 볼츠만 머신 51
    4.1 홉필드 네트워크 52
    4.2 볼츠만 머신 57
    4.3 제약 볼츠만 머신 61
    4.4 대조적 발산 63
    4.5 딥 빌리프 넷 66
    4.6 정리 68

    CHAPTER 05 자기부호화기 69
    5.1 자기부호화기 70
    5.2 디노이징 자기부호화기 73
    5.3 희소 자기부호화기 74
    5.4 적층 자기부호화기 79
    5.5 사전 훈련에서의 이용 79
    5.6 정리 80

    CHAPTER 06 일반화 성능을 향상시키기 위한 방법 81
    6.1 학습 표본 82
    6.2 전처리 89
    6.3 활성화 함수 94
    6.4 드롭아웃 97
    6.5 드롭커넥트 98
    6.7 정리 101

    CHAPTER 07 딥러닝을 위한 도구 103
    7.1 딥러닝 개발환경 104
    7.2 Theano 104
    7.3 Pylearn2 112
    7.4 Caffe 122
    7.5 학습 시스템 DIGITS 141
    7.6 Chainer 149
    7.7 텐서플로 164
    7.8 정리 179

    CHAPTER 08 딥러닝의 현재와 미래 181
    8.1 딥러닝의 응용 사례 182
    8.2 딥러닝의 미래 198
    8.3 정리 200

    참고문헌 202
    찾아보기 209

책 속으로

첫 번째에서 말하는 특징 표현력을 가진 신경망이란, 같은 클래스 안에서 변동이 있는 패턴, 이를테면, 손글씨처럼 개인 차이 혹은 노이즈가 포함된 상태에서도 바르게 인식할 수 있는 특징으로 변환할 수 있는 것을 말한다. 또, 노이즈가 포함된 경우에는 그 노이즈를 제거할 수 있는 신경망이라는 의미도 있다. 이 신경망을 디노이징 자기부호화기(denoising autoencoder)라고 부른다. 또, 잉여성을 제거하기 위해 규제화 항을 추가한 희소 자기부호화기도 있다.
_70쪽

딥러닝 학습에서 신경망의 종류나 구성도 중요하지만, 가장 중요한 것은 학습 표본이다. 딥러닝이 일반 물체 인식(classification)에서 성공을 거둔 하나의 요인은 대량의 데이터가 있었기 때문이다. 학습 표본으로 사전에 준비된 대량의 데이터 집합이 있으면 그 데이터 집합으로 학습을 수행할 수 있다. 이에 비해, 제한적인 데이터만 확보된 데이터 집합이나 직접 데이터를 수집해서 충분한 데이터를 모으지 못한 경우에는 확보된 데이터를 최대한 효과적으로 사용할 수 있는 방법인 데이터 확장을 생각해 볼 수 있다. 먼저, 충분히 갖춰진 데이터 집합으로 ImageNet과 Places를 소개한다. 그리고 제한적인 데이터에 대해 데이터의 양을 늘릴 수 있는 데이터 확장에 대해서도 설명하겠다.
_82쪽

그럼, 제한된 학습 표본밖에 없다면 딥러닝 기법을 이용한 학습을 수행하기 위해서는 어떻게 해야 할까? 생각해 볼 수 있는 첫 번째 방법으로, 지금 확보한 표본을 기초로 하는 조금 변이된 데이터를 추가하여 이미지 수를 늘리는 데이터 확장(data augmentation)이 있다. 데이터 확장은 표본에 평행이동이나 회전, 거울 반사 등을 적용하여 약간의 변화를 일으킨 새로운 표본을 만드는 방법이다. 여기에 쓴 변화 외에도 기하학적 혹은 이미지의 농담이나 색을 변경하는 경우도 있고, 랜덤 노이즈나 얼룩을 추가하는 경우도 있다.
_87쪽

딥러닝에서 일반화 성능을 향상시키기 위해 쓰이는 방법에는 알고리즘뿐 아니라, 학습 표본도 매우 중요한 영향을 끼친다. 학습 표본을 대량으로 수집하는 것은 상당히 어려우므로, ImageNet이나 Places와 같은 공개 데이터 집합을 이용하면 매우 편리하다. 그리고 이들을 단순히 학습에 이용하는 데 그치지 않고, 클래스 내의 변이를 억제하는 전처리를 가하는 것도 중요하다. 또 알고리즘적 수단으로서는 과학습을 억제하기 위한 드롭아웃과 드롭커넥트가 매우 효과적인 것으로 알려져 있으며, 현재의 딥러닝에서는 필수 불가결한 기법이 되고 있다.
_101쪽

이번 장에서는 현재 나온 많은 도구 중에서 Theano와 이를 이용한 Pylearn2, 이미지 인식 분야에서 확고히 자리 잡은 Caffe, 새로 공개된 도구 중 가장 주목을 받고 있는 Chainer와 텐서플로에 대해 그 특징과 사용법을 소개하였다. 이들 도구는 사용법이나 구현하기 위한 코드 구조도 다르다. 또, 신경망의 층이나 유닛 등에 대한 명칭도 서로 다르기 때문에 혼란스러울 수도 있다. 딥러닝을 이제 막 시작하려는 사람은 Caffe나 Chainer, 새로운 알고리즘을 개발하려는 사람은 Theano나 텐서플로를 사용하는 것이 좋다.
_179쪽

출판사 서평

다양한 딥러닝 프레임워크의 사용법을 익힌다!
딥러닝의 주요 개념을 컬러 그림을 통해 직관적으로 이해한다!

이 책은 딥러닝의 개념을 소개하는 것으로 시작해 딥러닝에 사용되는 여러 기법을 안내하고 있다. 딥러닝을 처음 배우려는 입문자부터 연구하는 대학생, 실제로 연구개발을 하는 실무자까지 다양한 독자를 이해시키기 위해 그림과 수식을 사용했다. 입문자들은 수식과 함께 나오는 그림을 통해 이해를 높일 수 있을 것이다.

딥러닝의 개념이나 기법을 이론적으로 설명하는 데 그치지 않고 실제로 활용할 수 있도록 다양한 딥러닝 도구도 소개하고 있다. 특히, 텐서플로와 카페 등 오픈소스로 공개된 인기 있는 도구들의 설치부터 활용 사례까지 포함하고 있다.

이 책의 주요 내용
● 딥러닝
딥러닝이란 무엇인가?
● 신경망
퍼셉트론 / 다층 퍼셉트론 / 역전파법 / 오차 함수와 활성화 함수 / 우도 함수 / 확률적 경사 강하법 / 학습률
● 합성곱 신경망
합성곱층 / 풀링층 / 전결합층 / 출력층
● 제약 볼츠만 머신
홉필드 네트워크 / 볼츠만 머신 / 딥 빌리프 넷
● 자기부호화기
디노이징 자기부호화기 / 희소 자기부호화기 / 적층 자기부호화기
● 일반화 성능을 향상시키는 방법
학습 표본 / 전처리 / 활성화 함수 / 드롭아웃 / 드롭커넥트
● 딥러닝을 위한 도구
Theano / Pylearn2 / Caffe / DIGITS / Chainer / TensorFlow

기본정보

상품정보
ISBN 9791185890890 ( 1185890890 )
쪽수 224쪽
크기
172 * 225 * 15 mm / 460 g
총권수 1권
시리즈명
제이펍의 인공지능 시리즈
원서명/저자명 イラストで學ぶディ-プラ-ニング/山下隆義

Klover

Klover 리뷰 안내
교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
리워드 안내
구매 후 90일 이내에 평점과 10자 이상의 리뷰 작성 시 e교환권 200원을 적립해 드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
한달 후 리뷰
구매 후 30일~ 120일 이내에 작성된 두 번째 구매리뷰에 대해 한 달 후 리뷰로 인지하고 e교환권 100원을 추가 제공합니다.
운영 원칙 안내
Klover 리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰
신고하기
다른 고객이 작성리뷰에 대해 불쾌함을 느끼는 경우 신고를 할 수 있으며, 신고 자가 일정수준 이상 누적되면 작성하신 리뷰가 노출되지 않을 수 있습니다.

구매 후 리뷰 작성 시, e교환권 200원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
TOP

저자 모두보기

매장별 재고 및 위치

할인쿠폰 다운로드

  • 쿠폰은 주문결제화면에서 사용 가능합니다.
  • 다운로드한 쿠폰은 마이 > 혜택/포인트 에서 확인 가능합니다.
  • 도서정가제 적용 대상 상품에 대해서는 정가의 10%까지 쿠폰 할인이 가능합니다.
  • 도서정가제 적용 대상 상품에 10% 할인이 되었다면, 해당 상품에는 사용하실 수
    없습니다.

적립예정포인트 안내

  • 통합포인트 안내

    • 통합포인트는 교보문고(인터넷, 매장), 핫트랙스(인터넷, 매장), 모바일 교보문고 등 다양한 곳에서 사용하실 수 있습니다.
    • 상품 주문 시, 해당 상품의 적립률에 따라 적립 예정 포인트가 자동 합산되고 주문하신 상품이 발송완료 된 후에 자동으로 적립됩니다.
    • 단, 쿠폰 및 마일리지, 통합포인트, e교환권 사용 시 적립 예정 통합포인트가 변동될 수 있으며 주문취소나 반품시에는 적립된 통합포인트가 다시 차감됩니다.
  • 통합포인트 적립 안내

    • 통합포인트는 도서정가제 범위 내에서 적용됩니다.
    • 추가적립 및 회원 혜택은 도서정가제 대상상품(국내도서, eBook등)으로만 주문시는 해당되지 않습니다.
  • 기본적립) 상품별 적립금액

    • 온라인교보문고에서 상품 구매시 상품의 적립률에 따라 적립됩니다.
    • 단 도서정가제 적용 대상인 국내도서,eBook은 15%내에서 할인율을 제외한 금액내로 적립됩니다.
  • 추가적립) 5만원 이상 구매시 통합포인트 2천원 추가적립

    • 5만원 이상 구매시 통합포인트 2천원 적립됩니다.
    • 도서정가제 예외상품(외서,음반,DVD,잡지(일부),기프트) 2천원 이상 포함시 적립 가능합니다.
    • 주문하신 상품이 전체 품절인 경우 적립되지 않습니다.
  • 회원혜택) 3만원이상 구매시 회원등급별 2~4% 추가적립

    • 회원등급이 플래티넘, 골드, 실버 등급의 경우 추가적립 됩니다.
    • 추가적립은 실결제액 기준(쿠폰 및 마일리지, 통합포인트, e교환권 사용액 제외) 3만원 이상일 경우 적립됩니다.
    • 주문 후 취소,반품분의 통합포인트는 단품별로 회수되며, 반품으로 인해 결제잔액이 3만원 미만으로 변경될 경우 추가 통합포인트는 전액 회수될 수 있습니다.

제휴 포인트 안내

제휴 포인트 사용

  • OK CASHBAG 10원 단위사용 (사용금액 제한없음)
  • GS&POINT 최대 10만 원 사용
더보기

구매방법 별 배송안내

배송 일정 안내

  • 출고 예정일은 주문상품의 결제(입금)가 확인되는 날 기준으로 상품을 준비하여 상품 포장 후 교보문고 물류센터에서 택배사로 전달하게 되는 예상 일자입니다.
  • 도착 예정일은 출고 예정일에서 택배사의 배송일 (약1~2일)이 더해진 날이며 연휴 및 토, 일, 공휴일을 제외한 근무일 기준입니다.
배송 일정 안내
출고예정일 도착예정일
1일이내 상품주문 후 2~3일 이내
2일이내 상품주문 후 3~4일 이내
3일이내 상품주문 후 4~5일 이내
4일이내 상품주문 후 5~6일 이내

연휴 및 토, 일, 공휴일은 제외됩니다.

당일배송 유의사항

  • 수도권 외 지역에서 선물포장하기 또는 사은품을 포함하여 주문할 경우 당일배송 불가
  • 회사에서 수령할 경우 당일배송 불가 (퇴근시간 이후 도착 또는 익일 배송 될 수 있음)
  • 무통장입금 주문 후 당일 배송 가능 시간 이후 입금된 경우 당일 배송 불가
  • 주문 후 배송지 변경 시 변경된 배송지에 따라 익일 배송될 수 있습니다.
  • 수도권 외 지역의 경우 효율적인 배송을 위해 각 지역 매장에서 택배를 발송하므로, 주문 시의 부록과 상이할 수 있습니다.
  • 각 지역 매장에서 재고 부족 시 재고 확보를 위해 당일 배송이 불가할 수 있습니다.

일반배송 시 유의사항

  • 날씨나 택배사의 사정에 따라 배송이 지연될 수 있습니다.
  • 수도권 외 지역 바로배송 서비스의 경우 경품 수령 선택 여부에 따라 도착 예정일이 변경됩니다.
  • 출고 예정일이 5일 이상인 상품의 경우(결제일로부터 7일 동안 미입고), 출판사 / 유통사 사정으로 품/절판 되어 구입이 어려울 수 있습니다. 이 경우 SMS, 메일로 알려드립니다.
  • 선물포장 주문 시 합배송 처리되며, 일부상품 품절 시 도착 예정일이 늦어질 수 있습니다.
  • 분철상품 주문 시 분철 작업으로 인해 기존 도착 예정일에 2일 정도 추가되며, 당일 배송, 해외 배송이 불가합니다.

해외주문 시 유의사항

  • 해외주문도서는 해외 거래처 사정에 의해 품절/지연될 수 있습니다.

Special order 주문 시 유의사항

  • 스페셜오더 도서나 일서 해외 주문 도서와 함께 주문 시 배송일이 이에 맞추어 지연되오니, 이점 유의해 주시기 바랍니다.

바로드림존에서 받기

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상 시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함 되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해 주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반 코너에서 수령확인이 가능합니다
  • 선물 받는 분의 휴대폰번호만 입력하신 후 결제하시면 받는 분 휴대폰으로 선물번호가 전달됩니다.
  • 문자를 받은 분께서는 마이 > 주문관리 > 모바일 선물내역 화면에서 선물번호와 배송지 정보를 입력하시면 선물주문이 완료되어 상품준비 및 배송이 진행됩니다.
  • 선물하기 결제하신 후 14일까지 받는 분이 선물번호를 등록하지 않으실 경우 주문은 자동취소 됩니다.
  • 또한 배송 전 상품이 품절 / 절판 될 경우 주문은 자동취소 됩니다.

바로드림 서비스 안내

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.
  1. STEP 01
    픽업박스에서 찾기 주문
  2. STEP 02
    도서준비완료 후 휴대폰으로 인증번호 전송
  3. STEP 03
    매장 방문하여 픽업박스에서 인증번호 입력 후 도서 픽업
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.

도서 소득공제 안내

  • 도서소득공제란?

    • 2018년 7월 1일 부터 근로소득자가 신용카드 등으로 도서구입 및 공연을 관람하기 위해 사용한 금액이 추가 공제됩니다. (추가 공제한도 100만원까지 인정)
      • 총 급여 7,000만 원 이하 근로소득자 중 신용카드, 직불카드 등 사용액이 총급여의 25%가 넘는 사람에게 적용
      • 현재 ‘신용카드 등 사용금액’의 소득 공제한도는 300만 원이고 신용카드사용액의 공제율은 15%이지만, 도서·공연 사용분은 추가로 100만 원의 소득 공제한도가 인정되고 공제율은 30%로 적용
      • 시행시기 이후 도서·공연 사용액에 대해서는 “2018년 귀속 근로소득 연말 정산”시기(19.1.15~)에 국세청 홈택스 연말정산간소화 서비스 제공
  • 도서 소득공제 대상

    • 도서(내서,외서,해외주문도서), eBook(구매)
    • 도서 소득공제 대상 상품에 수반되는 국내 배송비 (해외 배송비 제외)
      • 제외상품 : 잡지 등 정기 간행물, 음반, DVD, 기프트, eBook(대여,학술논문), 사은품, 선물포장, 책 그리고 꽃
      • 상품정보의 “소득공제” 표기를 참고하시기 바랍니다.
  • 도서 소득공제 가능 결제수단

    • 카드결제 : 신용카드(개인카드에 한함)
    • 현금결제 : 예치금, 교보e캐시(충전에한함), 해피머니상품권, 컬쳐캐쉬, 기프트 카드, 실시간계좌이체, 온라인입금
    • 간편결제 : 교보페이, 네이버페이, 삼성페이, 카카오페이, PAYCO, 토스, CHAI
      • 현금결제는 현금영수증을 개인소득공제용으로 신청 시에만 도서 소득공제 됩니다.
      • 교보e캐시 도서 소득공제 금액은 교보eBook > e캐시 > 충전/사용내역에서 확인 가능합니다.
      • SKpay, 휴대폰 결제, 교보캐시는 도서 소득공제 불가
  • 부분 취소 안내

    • 대상상품+제외상품을 주문하여 신용카드 "2회 결제하기"를 선택 한 경우, 부분취소/반품 시 예치금으로 환원됩니다.

      신용카드 결제 후 예치금으로 환원 된 경우 승인취소 되지 않습니다.

  • 도서 소득공제 불가 안내

    • 법인카드로 결제 한 경우
    • 현금영수증을 사업자증빙용으로 신청 한 경우
    • 분철신청시 발생되는 분철비용

알림 신청

아래의 알림 신청 시 원하시는 소식을 받아 보실 수 있습니다.
알림신청 취소는 마이룸 > 알림신청내역에서 가능합니다.

그림과 수식으로 배우는 통통 딥러닝
| Paperback
한달 후 리뷰
/ 좋았어요
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 올해 주식 투자를 시작했다. 아무것도 모르고 초심자의 행운으로 분유값 정도를 벌고 나니, 조금 더 공부해보고 싶어져서 『초격차 투자법』을 구매했다.
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
기대가됩니다~
기대가됩니다~
기대가됩니다~
이 구매자의 첫 리뷰 보기
/ 좋았어요
하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까 예견해 본다. 책한권으로 등의 근육들이 오그라진 느낌에 아직도 느껴진다. 하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이 처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까..
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
신고

신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.

허위 신고일 경우, 신고자의 서비스 활동이 제한될 수 있으니 유의하시어
신중하게 신고해주세요.

판형알림

  • A3 [297×420mm]
  • A4 [210×297mm]
  • A5 [148×210mm]
  • A6 [105×148mm]
  • B4 [257×364mm]
  • B5 [182×257mm]
  • B6 [128×182mm]
  • 8C [8절]
  • 기타 [가로×세로]