본문 바로가기

추천 검색어

실시간 인기 검색어

한 권으로 다지는 머신러닝&딥러닝 with 파이썬

인공지능 핵심 개념과 사용 사례부터 | 예제로 살펴보는 애플리케이션 개발 방법까지
한빛미디어 · 2021년 10월 21일
8.3 (8개의 리뷰)
추천해요 (100%의 구매자)
  • 머신러닝&딥러닝 with 파이썬 대표 이미지
    머신러닝&딥러닝 with 파이썬 대표 이미지
  • A4
    사이즈 비교
    210x297
    184x235
    단위 : mm
MD의 선택 무료배송 사은품 이벤트 소득공제
10% 36,000 40,000
적립/혜택
2,000P

기본적립

5% 적립 2,000P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 2,000P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서만 15,000원 이상 구매 시 무료배송
도서+교보Only(교보배송)을 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
주문정보를 불러오는 중입니다.
서울시 종로구 종로 1

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

패키지

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

인공지능이 처음이라면! 개념과 예제로 머신러닝 탄탄하게 다지기
이 책은 인공지능 관련 핵심 개념부터 머신러닝과 딥러닝까지, 인공지능 구현에 필요한 모든 것을 담았다. 실제 시나리오를 살펴보면서 문제에 따라 어떤 알고리즘을 어떻게 적용하는지 학습한다. 예제는 파이썬과 텐서플로를 사용하며 파이썬 입문자도 쉽게 따라 할 수 있는 코드로 구성되었다. 파이썬 프로그래밍 경험이 있다면 코드를 자유롭게 활용해 원하는 프로그램을 만들어볼 수 있다.

영화 추천 시스템 구축, 주식시장 분석, 객체 추적기 구축 등 흥미로운 예제를 따라 차근차근 학습하고 나면 다양한 인공지능 기술을 이해하고 상황에 맞춰 자신 있게 적용하는 자신을 발견하게 될 것이다. 이미지, 텍스트, 음성 등 다양한 데이터를 이해하는 똑똑한 애플리케이션을 지금 바로 만들어보자.

대상 독자
● 인공지능을 배우고 싶은 누구나
● 인공지능을 사용해 실제 애플리케이션을 개발하려는 파이썬 개발자

다루는 내용
● 인공지능, 머신러닝, 딥러닝이 무엇인지 이해한다.
● 주요 인공지능 사용 사례를 살펴본다.
● 머신러닝 파이프라인 구축 방법을 학습한다.
● 특성 선택과 특성 공학의 기본 개념을 이해한다.
● 지도 학습과 비지도 학습의 차이점을 이해한다.
● 인공지능을 개발하는 최신 클라우드 기술과 도구를 살펴본다.
● 자동 음성 인식 시스템과 챗봇을 만들어본다.
● 인공지능 알고리즘을 시계열 데이터에 적용한다.

작가정보

저자(글) 알베르토 아르타산체스

데이터 과학자로서 25년이 넘게 여러 포춘 500대 기업과 스타트업에서 컨설팅을 했다. 인공지능과 알고리즘에 관한 폭넓은 경험이 있다. AWS Big Data Specialty와 Machine Learning Specialty를 포함해 여덟 가지 AWS 자격증을 보유하고 있다. AWS 엠버서더이며 다양한 데이터 과학 블로그에 자주 글을 쓴다. 데이터 과학, 빅데이터와 분석, 언더라이팅 최적화, 이상 거래 탐지와 같은 주제로 강연을 한다. 인공지능을 사용한 데이터 레이크 구축에 특히 관심이 있다.

저자(글) 프라틱 조시

플루토시프트의 창립자이며 인공지능에 관한 책 아홉 권을 집필했다. TEDx, 글로벌 빅데이터 콘퍼런스, 머신러닝 개발자 콘퍼런스, 실리콘밸리 딥러닝 콘퍼런스 등에 초청받아 강연을 했다. 인공지능 외에도 정수론, 암호 기법, 양자컴퓨팅에 흥미가 있다. 가장 큰 목표는 인공지능이 전 세계 수십 억 사람에게 영향을 끼칠 수 있도록 모두에게 접근 가능하게 만드는 것이다.

번역 여인춘

텍사스 A&M 대학에서 컴퓨터공학 박사 학위를 취득했다. 삼성전자 DMC 연구소의 수석 연구원으로서 근무했으며, 퇴사 전까지 삼성전자 인공지능 개발 팀에서 일했다. 현재 텍사스 대학에서 Health and Science 교수로 재직 중이며 휴스턴 대학교에서 인공지능 관련 연구를 수행하고 있다. 모바일 프로그래밍, 프로그래밍 언어 등 다양한 분야의 기술 서적을 20여 권 집필하고 번역했다.

목차

  • [1장 인공지능 소개]
    1.1 AI란 무엇인가
    1.2 AI를 왜 공부해야 하는가
    1.3 AI 종류
    1.4 머신러닝의 다섯 가지 그룹
    1.5 튜링 테스트를 사용한 지능 정의
    1.6 기계가 인간처럼 생각하도록 만들기
    1.7 합리적 에이전트 구축
    1.8 일반 문제 해결사
    1.9 지능형 에이전트 구축
    1.10 파이썬 3 설치
    1.11 패키지 설치
    1.12 데이터 로딩
    1.13 정리

    [2장 인공지능 사용 사례]
    2.1 대표적인 AI 사용 사례
    2.2 디지털 개인 비서와 챗봇
    2.3 자율 주행 자동차
    2.4 배송과 창고 관리
    2.5 인간의 건강
    2.6 지식 검색
    2.7 추천 시스템
    2.8 스마트 홈
    2.9 게임
    2.10 영화 제작
    2.11 인수 및 거래 분석
    2.12 데이터 정리와 변환
    2.13 정리

    [3장 머신러닝 파이프라인]
    3.1 머신러닝 파이프라인이란 무엇인가
    3.2 문제 정의
    3.3 데이터 수집
    3.4 데이터 준비
    3.5 데이터 분리
    3.6 모델 훈련
    3.7 정리

    [4장 특성 선택과 특성 공학]
    4.1 특성 선택
    4.2 특성 공학
    4.3 정리

    [5장 지도 학습을 이용한 분류와 회귀]
    5.1 지도 학습 vs. 비지도 학습
    5.2 분류란 무엇인가
    5.3 데이터 전처리
    5.4 레이블 인코딩
    5.5 로지스틱 회귀 분류기
    5.6 나이브 베이즈 분류기
    5.7 컨퓨전 행렬
    5.8 서포트 벡터 머신
    5.9 서포트 벡터 머신을 사용한 소득 데이터 분류
    5.10 회귀란 무엇인가
    5.11 단일 변수 회귀 구축
    5.12 다변수 회귀 분석기 구축
    5.13 서포트 벡터 회귀를 사용해 주택 가격 추정하기
    5.14 정리

    [6장 앙상블 학습을 이용한 예측 분석]
    6.1 의사 결정 트리
    6.2 앙상블 학습
    6.3 랜덤 포레스트와 익스트림 랜덤 포레스트
    6.4 클래스 불균형 다루기
    6.5 그리드 검색을 사용해 최적의 훈련 매개변수 찾기
    6.6 상대적인 특성 중요도 계산하기
    6.7 익스트림 랜덤 포레스트 회귀자를 사용해 트래픽 예측하기
    6.8 정리

    [7장 비지도 학습을 이용한 패턴 감지]
    7.1 비지도 학습이란
    7.2 K-평균 알고리즘을 사용해 데이터 클러스터링하기
    7.3 가우시안 혼합 모델이란
    7.4 유사도 전파 모델을 사용해 주식시장에서 하위 그룹 찾기
    7.5 쇼핑 패턴에 따라 시장 분할하기
    7.6 정리

    [8장 추천 시스템 구축]
    8.1 최근접 이웃 추출
    8.2 K-최근접 이웃 분류기 생성
    8.3 유사성 점수 계산
    8.4 협업 필터링을 사용해 유사한 사용자 찾기
    8.5 영화 추천 시스템 구축
    8.6 정리

    [9장 논리 프로그래밍]
    9.1 논리 프로그래밍이란 무엇인가
    9.2 논리 프로그래밍 구성 요소 이해
    9.3 논리 프로그래밍을 사용한 문제 해결
    9.4 파이썬 패키지 설치
    9.5 수학적 표현 일치
    9.6 소수 검증
    9.7 가계도 구문 분석
    9.8 지도 분석
    9.9 퍼즐 솔버 구축
    9.10 정리

    [10장 휴리스틱 검색 기술]
    10.1 휴리스틱 검색은 인공지능인가
    10.2 휴리스틱 검색이란 무엇인가
    10.3 제약 충족 문제
    10.4 로컬 검색 기술
    10.5 탐욕 검색을 사용한 문자열 구성
    10.6 제약 충족 문제 해결하기
    10.7 영역 색상 문제 해결하기
    10.8 8-퍼즐 솔버 구축하기
    10.9 미로 찾기 구축하기
    10.10 정리

    [11장 유전 알고리즘과 유전 프로그래밍]
    11.1 진화주의자 그룹
    11.2 진화와 유전 알고리즘
    11.3 유전 알고리즘의 기본 개념
    11.4 사전 정의된 매개변수로 비트 패턴 생성하기
    11.5 진화 시각화하기
    11.6 심볼 회귀 문제 해결하기
    11.7 지능형 로봇 컨트롤러 구축하기
    11.8 유전 프로그래밍 사용 사례
    11.9 정리

    [12장 클라우드를 이용한 인공지능]
    12.1 기업이 클라우드로 마이그레이션하는 이유
    12.2 최상위 클라우드 제공 업체
    12.3 아마존 웹 서비스
    12.4 마이크로소프트 애저
    12.5 구글 클라우드 플랫폼
    12.6 정리

    [13장 인공지능을 이용한 게임 개발]
    13.1 게임에서 검색 알고리즘 사용하기
    13.2 조합 검색
    13.3 easyAI 라이브러리 설치
    13.4 마지막 동전 남기기 게임을 하는 봇 만들기
    13.5 틱택토 게임을 하는 봇 만들기
    13.6 커넥트포 게임을 하는 두 봇 만들기
    13.7 헥사폰 게임을 하는 두 봇 만들기
    13.8 정리

    [14장 음성 인식 구축]
    14.1 음성 신호 작업
    14.2 오디오 신호 시각화하기
    14.3 오디오 신호를 주파수 영역으로 변환하기
    14.4 오디오 신호 생성하기
    14.5 음악을 생성하기 위한 톤 합성하기
    14.6 음성 특성 추출하기
    14.7 음성 인식하기
    14.8 정리

    [15장 자연어 처리]
    15.1 패키지 소개 및 설치
    15.2 텍스트 데이터 토큰화
    15.3 형태소 분석을 사용해 단어를 기본 형식으로 변환하기
    15.4 기본형화를 사용해 단어를 기본 형식으로 변환하기
    15.5 텍스트 데이터를 청크로 나누기
    15.6 단어 가방 모델을 사용해 용어의 빈도 추출하기
    15.7 카테고리 예측기 구축
    15.8 성별 식별자 구축
    15.9 감정 분석기 구축
    15.10 잠재 디리클레 할당을 사용한 주제 모델링
    15.11 정리

    [16장 챗봇]
    16.1 챗봇의 미래
    16.2 오늘날의 챗봇
    16.3 챗봇 기본 개념
    16.4 잘 설계된 챗봇
    16.5 챗봇 플랫폼
    16.6 다이얼로그플로우를 사용한 챗봇 개발
    16.7 정리

    [17장 시퀀스 데이터와 시계열 분석]
    17.1 시퀀스 데이터 이해
    17.2 판다스로 시계열 데이터 처리하기
    17.3 시계열 데이터 슬라이싱하기
    17.4 시계열 데이터에 작업 수행하기
    17.5 시계열 데이터에서 통계 추출하기
    17.6 은닉 마르코프 모델을 사용해 데이터 생성하기
    17.7 조건부 랜덤 필드로 알파벳 시퀀스 식별하기
    17.8 주식시장 분석하기
    17.9 정리

    [18장 이미지 인식]
    18.1 이미지 인식의 중요성
    18.2 OpenCV
    18.3 프레임 차이
    18.4 색 공간을 사용한 객체 추적
    18.5 배경 삭제를 사용한 객체 추적
    18.6 캠시프트 알고리즘을 사용한 대화형 객체 추적기 구축
    18.7 광학 흐름 기반 추적
    18.8 얼굴 감지 및 추적
    18.9 눈 감지 및 추적
    18.10 정리

    [19장 신경망]
    19.1 신경망 소개
    19.2 퍼셉트론 기반 분류기 구축
    19.3 단일 계층 신경망 구축
    19.4 다층 신경망 구축
    19.5 벡터 양자화기 구축
    19.6 순환 신경망을 사용한 시퀀스 데이터 분석
    19.7 광학 문자 인식 데이터베이스에서 문자 시각화하기
    19.8 광학 문자 인식 엔진 구축
    19.9 정리

    [20장 합성곱 신경망을 이용한 딥러닝]
    20.1 합성곱 신경망 기초
    20.2 합성곱 신경망 아키텍처
    20.3 합성곱 신경망 계층 유형
    20.4 퍼셉트론 기반 선형 회귀 구축
    20.5 단일 계층 신경망을 사용한 이미지 분류기 구축
    20.6 합성곱 신경망을 사용한 이미지 분류 구축
    20.7 정리

    [21장 순환 신경망과 기타 딥러닝 모델]
    21.1 순환 신경망 기초
    21.2 순환 신경망 아키텍처
    21.3 언어 모델링 사용 사례
    21.4 순환 신경망 훈련
    21.5 정리

    [22장 강화 학습 - 지능형 에이전트 생성]
    22.1 학습의 의미 이해
    22.2 강화 학습 vs. 지도 학습
    22.3 강화 학습 사례
    22.4 강화 학습 구성 요소
    22.5 환경 구축
    22.6 학습 에이전트 구축
    22.7 정리

    [23장 인공지능과 빅데이터]
    23.1 빅데이터 기초
    23.2 빅데이터의 세 가지 V
    23.3 빅데이터와 머신러닝
    23.4 NoSQL 데이터베이스
    23.5 정리

출판사 서평

인공지능 초보 여행자에게 나무가 아닌 숲을 보여주는 완벽한 안내서!

알파고, 넷플릭스, 애플 시리는 인공지능이 사용된 대표적인 사례입니다. 인공지능 기술을 아는 사람이든 모르는 사람이든 누구나 일상에서 심심찮게 접할 수 있죠. 한편으로는 우리도 모르는 사이에 인공지능이 한몫을 톡톡히 하고 있는 사례도 있습니다. 구글 검색과 쿠팡 배송 시스템이 그 예입니다. 우리는 이를 통해 인공지능이 이미 일상에 깊숙이 자리 잡았음을 알 수 있습니다.

이것이 바로 이 책의 출발점입니다. 이 책은 독자가 일상 속 친숙한 사례로부터 인공지능 학습의 첫발을 내딛도록 안내합니다. 대표적인 사용 사례들을 먼저 소개한 뒤에 각 기술을 구현하려면 어떤 알고리즘을 어떻게 적용해야 하는지 차근차근 알려줍니다. 머신러닝과 딥러닝의 핵심 개념들을 너무 얕지도, 너무 어렵지도 않게 설명해 기본기를 탄탄히 다지도록 해줍니다. 영화 추천 시스템, 게임 봇, 텍스트 감정 분석기 등을 구축하는 흥미로운 예제도 함께합니다.
장별 주요 내용
[1장 인공지능 소개]
인공지능 애플리케이션을 구축하는 데 필요한 핵심 개념을 학습합니다. 파이썬 3 설치 방법도 알아봅니다.

[2장 인공지능 사용 사례]
인공지능 알고리즘을 살펴보기에 앞서 오늘날 가장 많이 사용되는 분야와 사용 사례를 분석합니다.

[3장 머신러닝 파이프라인]
머신러닝 파이프라인이 무엇인지 학습하고 구현에 어떤 도구가 사용되는지 알아봅니다. 파이프라인 내 주요 단계를 예제와 함께 살펴봅니다.

[4장 특성 선택과 특성 공학]
특성 선택과 특성 공학이 무엇이며 왜 중요한지 학습합니다. 기존 특성과 외부 소스에서 새 특성을 만드는 방법과, 중복되거나 가치가 낮은 특성을 제거하는 방법을 알아봅니다.

[5장 지도 학습을 이용한 분류와 회귀]
지도 학습이 무엇이며 비지도 학습과 어떤 차이가 있는지 알아봅니다. 분류가 무엇인지 학습하고 다양한 알고리즘을 살펴봅니다.

[6장 앙상블 학습을 이용한 예측 분석]
다양한 앙상블 방법과 각 방법을 언제 사용하는지 학습합니다. 배운 내용을 예제에 적용해 교통량을 예측해봅니다.

[7장 비지도 학습을 이용한 패턴 감지]
비지도 학습과 데이터 클러스터링 개념을 학습합니다. 다양한 클러스터링 알고리즘을 적용하는 방법을 알아보고 예제를 통해 작동 방식을 이해합니다.

[8장 추천 시스템 구축]
추천 시스템 구축에 필요한 개념을 학습하고 이를 활용해 영화 추천 시스템을 구축해봅니다.

[9장 논리 프로그래밍]
논리 프로그래밍으로 프로그램을 작성하는 방법을 배웁니다. 가계도 구문 분석, 지도 분석, 퍼즐 솔버 구축 등 문제 해결 예제를 살펴봅니다.

[10장 휴리스틱 검색 기술]
휴리스틱 검색의 정의와 검색 기술을 학습합니다. 예제를 통해 영역 색상 문제를 해결하고 8-퍼즐 솔버와 미로 찾기를 구축해봅니다.

[11장 유전 알고리즘과 유전 프로그래밍]
유전 프로그래밍이 AI 분야에서 중요한 이유를 알아봅니다. 유전 알고리즘을 사용해 간단한 문제를 해결하는 방법을 학습한 뒤 실제 문제에 적용해봅니다.

[12장 클라우드를 이용한 인공지능]
AI 프로젝트를 활성화하고 가속화하는 다양한 클라우드 제공 업체 및 제품을 알아봅니다.

[13장 인공지능을 이용한 게임 개발]
다양한 검색 알고리즘을 학습하고 마지막 동전 남기기, 틱택토, 커넥트포, 헥사폰 게임을 플레이하는 지능형 봇을 구축해봅니다.

[14장 음성 인식 구축]
음성 데이터를 처리하고 특성을 추출하는 방법을 배웁니다. 추출한 기능을 사용해 음성 인식 시스템을 구축해봅니다.

[15장 자연어 처리]
자연어 처리에 사용하는 다양한 기술을 학습합니다. 배운 내용을 활용해 카테고리 예측기, 성별 식별자, 감정 분석기를 구축해봅니다.

[16장 챗봇]
챗봇 구축에 필요한 기본 개념과 도구를 살펴본 뒤 이를 기반으로 챗봇을 구축해봅니다.

[17장 시퀀스 데이터와 시계열 분석]
시퀀스 데이터의 다양한 특성을 살펴보고 은닉 마르코프 모델을 사용해 시퀀스 데이터를 분석하는 방법을 학습합니다. 배운 내용을 활용해 주식시장 데이터를 분석해봅니다.

[18장 이미지 인식]
이미지 인식의 중요성을 알아보고 라이브 영상에서 물체를 감지 및 추적하는 방법을 학습합니다. 얼굴과 눈을 감지하고 추적하는 예제를 살펴봅니다.

[19장 신경망]
신경망을 구축하고 훈련하는 방법을 학습합니다. 퍼셉트론이 무엇이며 신경망 구축에 어떻게 사용되는지 알아봅니다. 마지막에는 광학 문자 인식 엔진을 구축해봅니다.

[20장 합성곱 신경망을 이용한 딥러닝]
딥러닝의 기본을 학습합니다. 합성곱 신경망에 관련된 다양한 개념을 살펴보고 이를 이미지 인식에 사용하는 방법을 알아봅니다. 학습한 내용을 기반으로 실제 애플리케이션을 구축해봅니다.

[21장 순환 신경망과 기타 딥러닝 모델]
자연어 처리 및 이해에 자주 사용되는 순환 신경망을 학습합니다. 순환 신경망 아키텍처를 살펴보고 어떤 이점과 제한 사항이 있는지 알아본 뒤 간단한 예제를 살펴봅니다.

[22장 강화 학습 - 지능형 에이전트 생성]
강화 학습의 정의와 모델 내 구성 요소를 살펴봅니다. 강화 학습 시스템을 구축하는 데 사용하는 기술과 학습 에이전트를 구축하는 방법을 알아봅니다.

[23장 인공지능과 빅데이터]
빅데이터 기술을 적용해 머신러닝 파이프라인을 가속화하는 방법을 알아보고 데이터 세트 수집, 변환, 유효성 검사를 간소화하는 기술을 분석합니다. 아파치 스파크를 사용하는 예제를 살펴봅니다.

기본정보

상품정보
ISBN 9791162244876
발행(출시)일자 2021년 10월 21일
쪽수 680쪽
크기
184 * 235 * 30 mm / 1196 g
총권수 1권
원서명/저자명 Artificial Intelligence with Python - Second Edition/Artasanchez, Alberto

Klover

Klover 리뷰 안내
교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
리워드 안내
구매 후 90일 이내에 평점과 10자 이상의 리뷰 작성 시 e교환권 200원을 적립해 드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
판매가 1,000원 미만 도서의 경우 리워드 지급 대상에서 제외됩니다.
한달 후 리뷰
구매 후 30일~ 120일 이내에 작성된 두 번째 구매리뷰에 대해 한 달 후 리뷰로 인지하고 e교환권 100원을 추가 제공합니다.
운영 원칙 안내
Klover 리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

리뷰는 1인이 중복으로 작성하실 수는 있지만, 평점계산은 가장 최근에 남긴 1건의 리뷰만 반영됩니다.
신고하기
다른 고객이 작성리뷰에 대해 불쾌함을 느끼는 경우 신고를 할 수 있으며, 신고 자가 일정수준 이상 누적되면 작성하신 리뷰가 노출되지 않을 수 있습니다.

구매 후 리뷰 작성 시, e교환권 200원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
TOP

저자 모두보기

매장별 재고 및 위치

할인쿠폰 다운로드

  • 쿠폰은 주문결제화면에서 사용 가능합니다.
  • 다운로드한 쿠폰은 마이 > 혜택/포인트 에서 확인 가능합니다.
  • 도서정가제 적용 대상 상품에 대해서는 정가의 10%까지 쿠폰 할인이 가능합니다.
  • 도서정가제 적용 대상 상품에 10% 할인이 되었다면, 해당 상품에는 사용하실 수
    없습니다.

적립예정포인트 안내

  • 통합포인트 안내

    • 통합포인트는 교보문고(인터넷, 매장), 핫트랙스(인터넷, 매장), 모바일 교보문고 등 다양한 곳에서 사용하실 수 있습니다.
    • 상품 주문 시, 해당 상품의 적립률에 따라 적립 예정 포인트가 자동 합산되고 주문하신 상품이 발송완료 된 후에 자동으로 적립됩니다.
    • 단, 쿠폰 및 마일리지, 통합포인트, e교환권 사용 시 적립 예정 통합포인트가 변동될 수 있으며 주문취소나 반품시에는 적립된 통합포인트가 다시 차감됩니다.
  • 통합포인트 적립 안내

    • 통합포인트는 도서정가제 범위 내에서 적용됩니다.
    • 추가적립 및 회원 혜택은 도서정가제 대상상품(국내도서, eBook등)으로만 주문시는 해당되지 않습니다.
  • 기본적립) 상품별 적립금액

    • 온라인교보문고에서 상품 구매시 상품의 적립률에 따라 적립됩니다.
    • 단 도서정가제 적용 대상인 국내도서,eBook은 15%내에서 할인율을 제외한 금액내로 적립됩니다.
  • 추가적립) 5만원 이상 구매시 통합포인트 2천원 추가적립

    • 5만원 이상 구매시 통합포인트 2천원 적립됩니다.
    • 도서정가제 예외상품(외서,음반,DVD,잡지(일부),기프트) 2천원 이상 포함시 적립 가능합니다.
    • 주문하신 상품이 전체 품절인 경우 적립되지 않습니다.
  • 회원혜택) 3만원이상 구매시 회원등급별 2~4% 추가적립

    • 회원등급이 플래티넘, 골드, 실버 등급의 경우 추가적립 됩니다.
    • 추가적립은 실결제액 기준(쿠폰 및 마일리지, 통합포인트, e교환권 사용액 제외) 3만원 이상일 경우 적립됩니다.
    • 주문 후 취소,반품분의 통합포인트는 단품별로 회수되며, 반품으로 인해 결제잔액이 3만원 미만으로 변경될 경우 추가 통합포인트는 전액 회수될 수 있습니다.

제휴 포인트 안내

제휴 포인트 사용

  • OK CASHBAG 10원 단위사용 (사용금액 제한없음)
  • GS&POINT 최대 10만 원 사용
더보기

구매방법 별 배송안내

배송 일정 안내

  • 출고 예정일은 주문상품의 결제(입금)가 확인되는 날 기준으로 상품을 준비하여 상품 포장 후 교보문고 물류센터에서 택배사로 전달하게 되는 예상 일자입니다.
  • 도착 예정일은 출고 예정일에서 택배사의 배송일 (약1~2일)이 더해진 날이며 연휴 및 토, 일, 공휴일을 제외한 근무일 기준입니다.
배송 일정 안내
출고예정일 도착예정일
1일이내 상품주문 후 2~3일 이내
2일이내 상품주문 후 3~4일 이내
3일이내 상품주문 후 4~5일 이내
4일이내 상품주문 후 5~6일 이내

연휴 및 토, 일, 공휴일은 제외됩니다.

당일배송 유의사항

  • 수도권 외 지역에서 선물포장하기 또는 사은품을 포함하여 주문할 경우 당일배송 불가
  • 회사에서 수령할 경우 당일배송 불가 (퇴근시간 이후 도착 또는 익일 배송 될 수 있음)
  • 무통장입금 주문 후 당일 배송 가능 시간 이후 입금된 경우 당일 배송 불가
  • 주문 후 배송지 변경 시 변경된 배송지에 따라 익일 배송될 수 있습니다.
  • 수도권 외 지역의 경우 효율적인 배송을 위해 각 지역 매장에서 택배를 발송하므로, 주문 시의 부록과 상이할 수 있습니다.
  • 각 지역 매장에서 재고 부족 시 재고 확보를 위해 당일 배송이 불가할 수 있습니다.

일반배송 시 유의사항

  • 날씨나 택배사의 사정에 따라 배송이 지연될 수 있습니다.
  • 수도권 외 지역 바로배송 서비스의 경우 경품 수령 선택 여부에 따라 도착 예정일이 변경됩니다.
  • 출고 예정일이 5일 이상인 상품의 경우(결제일로부터 7일 동안 미입고), 출판사 / 유통사 사정으로 품/절판 되어 구입이 어려울 수 있습니다. 이 경우 SMS, 메일로 알려드립니다.
  • 선물포장 주문 시 합배송 처리되며, 일부상품 품절 시 도착 예정일이 늦어질 수 있습니다.
  • 분철상품 주문 시 분철 작업으로 인해 기존 도착 예정일에 2일 정도 추가되며, 당일 배송, 해외 배송이 불가합니다.

해외주문 시 유의사항

  • 해외주문도서는 해외 거래처 사정에 의해 품절/지연될 수 있습니다.

Special order 주문 시 유의사항

  • 스페셜오더 도서나 일서 해외 주문 도서와 함께 주문 시 배송일이 이에 맞추어 지연되오니, 이점 유의해 주시기 바랍니다.

바로드림존에서 받기

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상 시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함 되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해 주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반 코너에서 수령확인이 가능합니다
  • 선물 받는 분의 휴대폰번호만 입력하신 후 결제하시면 받는 분 휴대폰으로 선물번호가 전달됩니다.
  • 문자를 받은 분께서는 마이 > 주문관리 > 모바일 선물내역 화면에서 선물번호와 배송지 정보를 입력하시면 선물주문이 완료되어 상품준비 및 배송이 진행됩니다.
  • 선물하기 결제하신 후 14일까지 받는 분이 선물번호를 등록하지 않으실 경우 주문은 자동취소 됩니다.
  • 또한 배송 전 상품이 품절 / 절판 될 경우 주문은 자동취소 됩니다.

바로드림 서비스 안내

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.
  1. STEP 01
    픽업박스에서 찾기 주문
  2. STEP 02
    도서준비완료 후 휴대폰으로 인증번호 전송
  3. STEP 03
    매장 방문하여 픽업박스에서 인증번호 입력 후 도서 픽업
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.

도서 소득공제 안내

  • 도서 소득공제란?

    • 2018년 7월 1일 부터 근로소득자가 신용카드 등으로 도서구입 및 공연을 관람하기 위해 사용한 금액이 추가 공제됩니다. (추가 공제한도 100만원까지 인정)
      • 총 급여 7,000만 원 이하 근로소득자 중 신용카드, 직불카드 등 사용액이 총급여의 25%가 넘는 사람에게 적용
      • 현재 ‘신용카드 등 사용금액’의 소득 공제한도는 300만 원이고 신용카드사용액의 공제율은 15%이지만, 도서·공연 사용분은 추가로 100만 원의 소득 공제한도가 인정되고 공제율은 30%로 적용
      • 시행시기 이후 도서·공연 사용액에 대해서는 “2018년 귀속 근로소득 연말 정산”시기(19.1.15~)에 국세청 홈택스 연말정산간소화 서비스 제공
  • 도서 소득공제 대상

    • 도서(내서,외서,해외주문도서), eBook(구매)
    • 도서 소득공제 대상 상품에 수반되는 국내 배송비 (해외 배송비 제외)
      • 제외상품 : 잡지 등 정기 간행물, 음반, DVD, 기프트, eBook(대여,학술논문), 사은품, 선물포장, 책 그리고 꽃
      • 상품정보의 “소득공제” 표기를 참고하시기 바랍니다.
  • 도서 소득공제 가능 결제수단

    • 카드결제 : 신용카드(개인카드에 한함)
    • 현금결제 : 예치금, 교보e캐시(충전에한함), 해피머니상품권, 컬쳐캐쉬, 기프트 카드, 실시간계좌이체, 온라인입금
    • 간편결제 : 교보페이, 네이버페이, 삼성페이, 카카오페이, PAYCO, 토스, CHAI
      • 현금결제는 현금영수증을 개인소득공제용으로 신청 시에만 도서 소득공제 됩니다.
      • 교보e캐시 도서 소득공제 금액은 교보eBook > e캐시 > 충전/사용내역에서 확인 가능합니다.
      • SKpay, 휴대폰 결제, 교보캐시는 도서 소득공제 불가
  • 부분 취소 안내

    • 대상상품+제외상품을 주문하여 신용카드 "2회 결제하기"를 선택 한 경우, 부분취소/반품 시 예치금으로 환원됩니다.

      신용카드 결제 후 예치금으로 환원 된 경우 승인취소 되지 않습니다.

  • 도서 소득공제 불가 안내

    • 법인카드로 결제 한 경우
    • 현금영수증을 사업자증빙용으로 신청 한 경우
    • 분철신청시 발생되는 분철비용

알림 신청

아래의 알림 신청 시 원하시는 소식을 받아 보실 수 있습니다.
알림신청 취소는 마이룸 > 알림신청내역에서 가능합니다.

한 권으로 다지는 머신러닝&딥러닝 with 파이썬
인공지능 핵심 개념과 사용 사례부터 | 예제로 살펴보는 애플리케이션 개발 방법까지
한달 후 리뷰
/ 좋았어요
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 올해 주식 투자를 시작했다. 아무것도 모르고 초심자의 행운으로 분유값 정도를 벌고 나니, 조금 더 공부해보고 싶어져서 『초격차 투자법』을 구매했다.
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
기대가됩니다~
기대가됩니다~
기대가됩니다~
이 구매자의 첫 리뷰 보기
/ 좋았어요
하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까 예견해 본다. 책한권으로 등의 근육들이 오그라진 느낌에 아직도 느껴진다. 하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이 처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까..
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
신고

신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.

허위 신고일 경우, 신고자의 서비스 활동이 제한될 수 있으니 유의하시어
신중하게 신고해주세요.

판형알림

  • A3 [297×420mm]
  • A4 [210×297mm]
  • A5 [148×210mm]
  • A6 [105×148mm]
  • B4 [257×364mm]
  • B5 [182×257mm]
  • B6 [128×182mm]
  • 8C [8절]
  • 기타 [가로×세로]
EBS X 교보문고 고객님을 위한 5,000원 열공 혜택!
자세히 보기