데이터 분석을 위한 SQL 레시피
도서+교보Only(교보배송)을 함께 15,000원 이상 구매 시 무료배송
15,000원 미만 시 2,500원 배송비 부과
20,000원 미만 시 2,500원 배송비 부과
15,000원 미만 시 2,500원 배송비 부과
1Box 기준 : 도서 10권
알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.
해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
패키지
북카드
키워드 Pick
키워드 Pick 안내
관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.
이 책을 익히면 데이터 분석 담당자는 각종 액세스 분석 툴이 제공하는 지표나 필터 없이 결과물을 스스로 만들어낼 수 있습니다. 엔지니어 역시 데이터 분석 업무를 충분히 이해하고 분석 담당자나 경영진에게 적절한 정보를 제공하거나 보고서를 만들어 제출할 수 있습니다.
작가정보
저자 가사키 나가토(加? 長門)
게이오대학 대학원과 학생 벤처에서 멀티미디어 데이터베이스를 대상으로 한 검색 및 추천 알고리즘의 연구와 서비스 개발을 했습니다. 현재는 (주)DMM.com 연구소에서 빅데이터를 활용하기 위한 기반 시스템 구축, 스파크와 SQL on Hadoop을 이용한 추천 기능 및 빅데이터 활용에 대한 연구와 개발을 하고 있습니다
저자 다미야 나오토(田宮 直人)
대형 신문사에서 구인 서비스와 커뮤니티 서비스를 개발하다가 (주)사이버에이전트로 이직하면서 데이터 애널리스트로 변신했습니다. (주)DMM.com 연구소에서는 빅데이터 부서를 세웠고 현재는 데이터 컨설턴트 프리랜서로 활약 중입니다. 데이터 분석은 물론 데이터 분석환경의 설계와 구축, 로그 설계, 추천 API 작성 등 데이터 관련 업무를 전반적으로 다룹니다.
역자 윤인성
출근하는 게 싫어서 책을 집필/번역하기 시작했습니다. 일본어는 픽시브에서 웹 코믹을 읽다가 배웠다고 전해집니다. 현재 직업 특성상 집에서 나갈 이유가 별로 없다는 것에 굉장히 만족하는 성격이기도 합니다. 홍차와 커피를 좋아하며 요리, 음악, 그림, 스컬핑 등이 취미입니다. 『모던 웹을 위한 JavaScript+jQuery 입문』 『모던 웹을 위한 Node.js 프로그래밍』 『모던 웹 디자인을 위한 HTML5+CSS3 입문』(이상 한빛미디어) 등을 저술하였으며, 『파이썬을 이용한 머신러닝, 딥러닝 실전 개발 입문』(위키북스), 『TopCoder 알고리즘 트레이닝』 『Nature of Code』『SQL 레벨업』 『오라클 레벨업』(이상 한빛미디어), 『소셜 코딩으로 이끄는 GitHub 실천 기술』(제이펍) 등을 번역했습니다.
작가의 말
최근 SQL의 기능을 설명하는 블로그 글과 책이 많지만, 실제 업무에서 사용하는 SQL과는 큰 차이가 있습니다. SQL이라고 하면 대부분 웹 서비스의 백엔드에서 사용하는 내용만 다루는 경우가 많고, 데이터 분석을 위한 SQL을 효율적으로 설명하는 경우가 거의 없습니다. 마찬가지로 데이터 분석 방법과 분석을 통해 서비스를 개선한 사례가 굉장히 많이 쏟아져 나오지만, 정작 이를 어떻게 다루는지에 관한 언급이 없어서 활용 방법을 몰라 당황하는 사람도 많습니다. 이 책은 필자들이 평소 업무에서 만들던 리포트와 SQL 코드를 범용으로 사용할 수 있게 수정하여 레시피 모음처럼 구성했습니다. ‘최신 SQL 작성 방법, 분석 방법, 서비스를 개선할 방법을 하나의 책에 정리하자’가 이 책의 집필 계기로, 일상 업무를 하면서 책을 집필했습니다. 분석과 서비스 개선 문의를 받았을 때 이 책만 보여줘도 많은 사람이 이해하고 활용할 수 있을 정도로 실무 내용이 많이 들어갔다고 자부합니다. 이 책을 통해서 더 많은 사람이 빅데이터 활용을 위한 분석력과 SQL 능력을 키울 수 있기를 바랍니다.
목차
- 1장 빅데이터 시대에 요구되는 분석력이란?
1강 데이터를 둘러싼 환경의 변화
1 접근 분석 도구의 등장
2 빅데이터의 등장
2강 여러 가지 과제
1 분석 담당자의 과제
2 엔지니어의 과제
3 분석 담당자와 엔지니어의 이해관계
2장 이 책에서 다루는 도구와 데이터
3강 시스템
1 PostgreSQL
2 Apache Hive
3 Amazon Redshift
4 Google BigQuery
5 SparkSQL
4강 데이터
1 데이터의 종류
2 업무 데이터
3 로그 데이터
4 두 데이터를 사용해서 생성되는 가치
3장 데이터 가공을 위한 SQL
5강 하나의 값 조작하기
1 코드 값을 레이블로 변경하기
2 URL에서 요소 추출하기
3 문자열을 배열로 분해하기
4 날짜와 타임스탬프 다루기
5 결손 값을 디폴트 값으로 대치하기
6강 여러 개의 값에 대한 조작
1 문자열 연결하기
2 여러 개의 값 비교하기
3 2개의 값 비율 계산하기
4 두 값의 거리 계산하기
5 날짜/시간 계산하기
6 IP 주소 다루기
7강 하나의 테이블에 대한 조작
1 그룹의 특징 잡기
2 그룹 내부의 순서
3 세로 기반 데이터를 가로 기반으로 변환하기
4 가로 기반 데이터를 세로 기반 데이터로 변환하기
8강 여러 개의 테이블 조작하기
1 여러 개의 테이블을 세로로 결합하기
2 여러 개의 테이블을 가로로 정렬하기
3 조건 플래그를 0과 1로 표현하기
4 계산한 테이블에 이름 붙여 재사용하기
5 유사 테이블 만들기
4장 매출을 파악하기 위한 데이터 추출
9강 시계열 기반으로 데이터 집계하기
1 날짜별 매출 집계하기
2 이동 평균을 사용한 날짜별 추이 보기
3 당월 매출 누계 구하기
4 월별 매출의 작대비 구하기
5 Z 차트로 업적의 추이 확인하기
6 매출을 파악할 때 중요 포인트
10강 다면적인 축을 사용해 데이터 집약하기
1 카테고리별 매출과 소계 계산하기
2 ABC 분석으로 잘 팔리는 상품 판별하기
3 팬 차트로 상품의 매출 증가율 확인하기
4 히스토그램으로 구매 가격대 집계하기
5장 사용자를 파악하기 위한 데이터 추출
11강 사용자 전체의 특징과 경향 찾기
1 사용자의 액션 수 집계하기
2 연령별 구분 집계하기
3 연령별 구분의 특징 추출하기
4 사용자의 방문 빈도 집계하기
5 벤 다이어그램으로 사용자 액션 집계하기
6 Decile 분석을 사용해 사용자를 10단계 그룹으로 나누기
7 RFM 분석으로 사용자를 3가지 관점의 그룹으로 나누기
12강 시계열에 따른 사용자 전체의 상태 변화 찾기
1 등록 수의 추이와 경향 보기
2 지속률과 정착률 산출하기
3 지속과 정착에 영향을 주는 액션 집계하기
4 액션 수에 따른 정착률 집계하기
5 사용 일수에 따른 정착률 집계하기
6 사용자의 잔존율 집계하기
7 방문 빈도를 기반으로 사용자 속성을 정의하고 집계하기
8 방문 종류를 기반으로 성장지수 집계하기
9 지표 개선 방법 익히기
13강 시계열에 따른 사용자의 개별적인 행동 분석하기
1 사용자의 액션 간격 집계하기
2 카트 추가 후에 구매했는지 파악하기
3 등록으로부터의 매출을 날짜별로 집계하기
6장 웹사이트에서의 행동을 파악하는 데이터 추출하기
14강 사이트 전체의 특징/경향 찾기
1 날짜별 방문자 수 / 방문 횟수 / 페이지 뷰 집계하기
2 페이지별 쿠키 / 방문 횟수 / 페이지 뷰 집계하기
3 유입원별로 방문 횟수 또는 CVR 집계하기
4 접근 요일, 시간대 파악하기
15강 사이트 내의 사용자 행동 파악하기
1 입구 페이지와 출구 페이지 파악하기
2 이탈률과 직귀율 계산하기
3 성과로 이어지는 페이지 파악하기
4 페이지 평가 산출하기
5 검색 조건들의 사용자 행동 가시화하기
6 폴아웃 리포트를 사용해 사용자 회유를 가시화하기
7 사이트 내부에서 사용자 흐름 파악하기
8 페이지 완독률 집계하기
9 사용자 행동 전체를 시각화하기
16강 입력 양식 최적화하기
1 오류율 집계하기
2 입력~확인~완료까지의 이동률 집계하기
3 입력 양식 직귀율 집계하기
4 오류가 발생하는 항목과 내용 집계하기
7장 데이터 활용의 정밀도를 높이는 분석 기술
17강 데이터를 조합해서 새로운 데이터 만들기
1 IP 주소를 기반으로 국가와 지역 보완하기
2 주말과 공휴일 판단하기
3 하루 집계 범위 변경하기
18강 이상값 검출하기
1 데이터 분산 계산하기
2 크롤러 제외하기
3 데이터 타당성 확인하기
4 특정 IP 주소에서의 접근 제외하기
19강 데이터 중복 검출하기
1 마스터 데이터의 중복 검출하기
2 로그 중복 검출하기
20강 여러 개의 데이터셋 비교하기
1 데이터의 차이 추출하기
2 두 순위의 유사도 계산하기
8장 데이터를 무기로 삼기 위한 분석 기술
21강 검색 기능 평가하기
1 NoMatch 비율과 키워드 집계하기
2 재검색 비율과 키워드 집계하기
3 재검색 키워드를 분류해서 집계하기
4 검색 이탈 비율과 키워드 집계하기
5 검색 키워드 관련 지표의 집계 효율화하기
6 검색 결과의 포괄성을 지표화하기
7 검색 결과의 타당성을 지표화하기
8 검색 결과 순위와 관련된 지표 계산하기
22강 데이터 마이닝
1 어소시에이션 분석
23강 추천
1 추천 시스템의 넓은 의미
2 특정 아이템에 흥미가 있는 사람이 함께 찾아보는 아이템 검색
3 당신을 위한 추천 상품
4 추천 시스템을 개선할 때의 포인트
5 출력할 때 포인트
6 추천과 관련한 지표
24강 점수 계산하기
1. 여러 값을 균형있게 조합해서 점수 계산하기
2 값의 범위가 다른 지표를 정규화해서 비교 가능한 상태로 만들기
3 각 데이터의 편차값 계산하기
4 거대한 숫자 지표를 직감적으로 이해하기 쉽게 가공하기
5 독자적인 점수 계산 방법을 정의해서 순위 작성하기
9장 지식을 행동으로 옮기기
25강 데이터 활용의 현장
1 데이터 활용 방법 생각하기
2 데이터와 관련한 등장 인물 이해하기
3 로그 형식 생각해보기
4 데이터를 활용하기 쉽게 상태 조정하기
5 데이터 분석 과정
6 분석을 위한 한 걸음 내딛기
7 상대방에 맞는 리포트 만들기
8 빅데이터 시대의 데이터 분석자
출판사 서평
데이터 처리부터 매출·유저 파악, 리포팅 등 각종 데이터 분석과 활용까지!
현장에서 데이터 분석에 필요한 실전 SQL 작성법과 노하우
단순한 데이터 분석에 만족하던 시대를 지나 딥러닝 시대로 접어들었지만, SQL은 여전히 빅데이터와 스몰데이터를 가리지 않고 널리 쓰이는 소중한 분석 도구입니다. 다만 분석용 SQL이 보통 길고 읽기 어렵다 보니, 관련 업무 담당자들이 실무에 활용해보려 해도 금세 한계에 부닥치는 경우가 많습니다.
이에 안타까움을 느낀 저자들이 평소 현장에서 실제로 작성했던 데이터 분석 업무 리포트나 SQL 코드를 범용화하여 한 권의 레시피 모음집으로 보기 쉽게 묶어냈습니다. 데이터 가공과 매출 파악, 사용자 파악, 웹사이트 내 사용자 행동 파악, 이상수치 검출, 검출 기능 평가, 추천 기능 등 구체적 상황별 실전 대응 방법과 노하우를 한 권의 책에 세심히 녹여냈습니다.
이 책은 DB 관리자나 개발자는 물론, 일반인(통계 분석/ 사용자 경향 분석/ 마케팅 업무 관련자)까지도 유용하게 써먹을 수 있는 구체적인 상황별 실전 팁으로 가득합니다. 다만 SQL 사용법 자체를 설명하는 입문서는 아니므로, 기본적인 SQL 지식이 없다면 내용을 이해하기 어려울 수 있습니다. SQL을 처음 접하는 독자라면 먼저 한빛미디어의 『SQL 첫걸음』과 『SQL 레벨업』부터 읽어보기를 권합니다. 당장 실전에 활용할 ‘실천용’ 지식이 필요한 독자라면 분명 이 책이 훌륭한 나침반이 되어줄 것입니다.
★ 주요 내용
●데이터를 둘러싼 환경 변화와 각종 과제
●각종 데이터와 미들웨어
●기초적인 SQL 작성법과 데이터 가공법
●구체적인 상황별 데이터 분석법과 SQL 예제
●실제 데이터 활용 사례와 노하우
기본정보
ISBN | 9791162240601 | ||
---|---|---|---|
발행(출시)일자 | 2018년 04월 01일 | ||
쪽수 | 600쪽 | ||
크기 |
184 * 237
* 26
mm
/ 1066 g
|
||
총권수 | 1권 | ||
원서명/저자명 | ビッグデ-タ分析.活用のためのSQLレシピ デ-タ加工から賣上.ユ-ザ-把握,レポ-ティング等#の各種デ-タ分析まで/加さき長門 |
Klover
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
판매가 1,000원 미만 도서의 경우 리워드 지급 대상에서 제외됩니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
리뷰는 1인이 중복으로 작성하실 수는 있지만, 평점계산은 가장 최근에 남긴 1건의 리뷰만 반영됩니다.
구매 후 리뷰 작성 시, e교환권 200원 적립
문장수집
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
구매 후 리뷰 작성 시, e교환권 100원 적립