본문 바로가기

추천 검색어

실시간 인기 검색어

적대적 머신러닝

머신러닝 알고리즘으로 하는 시스템 보안 공격과 방어
데이터 과학
에이콘출판 · 2020년 06월 30일 출시
7.5 (1개의 리뷰)
추천해요 (100%의 구매자)
  • 적대적 머신러닝 대표 이미지
    적대적 머신러닝 대표 이미지
  • A4
    사이즈 비교
    210x297
    188x235
    단위 : mm
MD의 선택 무료배송 사은품 이벤트 소득공제
10% 36,000 40,000
적립/혜택
2,000P

기본적립

5% 적립 2,000P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 2,000P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서 / 외국도서
도서만 1만 원 이상 구매 시 무료배송
도서 + 잡지 / 만화 / :K컬렉션을 함께 1만 원 이상 구매 시 무료배송

1만원 미만 시 2,000원 배송비 부과

잡지 / 만화 / :K컬렉션 (교보배송)
각각 구매하거나 함께 2만 원 이상 구매 시 무료배송

2만원 미만 시 2,000원 배송비 부과

해외주문 서양도서 / 해외주문 일본도서 (교보배송)
각각 구매하거나 함께 1만 원 이상 구매 시 무료배송

1만원 미만 시 2,000원 배송비 부과

업체배송 상품 (전집, GIFT, 음반 / DVD 등)
중고장터 상품
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
주문정보를 불러오는 중입니다.
서울시 종로구 종로 1

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

패키지

북카드

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

이메일 스팸과 네트워크 보안에 관한 사례 연구를 포함해 시스템의 보안을 분석하고 적대적인 환경에서 강건한 머신러닝 알고리즘을 구축하는 데 필요한 이론과 실용적인 기술을 모두 다루고 있어, 컴퓨터 보안과 머신러닝 분야의 연구자와 실무자, 학생에게 많은 도움이 될 것이다.

★ 이 책의 다루는 내용 ★
저명한 연구자들이 서술한 이 완벽한 입문서는 적대적(敵對的) 환경(adversarial environment)에서 강건한 머신러닝(robust machine learning)을 구축하는 데 필요한 모든 이론과 도구를 제공한다. 공격자가 통계적 추론을 조작하려고 데이터를 적극적으로 중독시킬 때 머신러닝 시스템을 어떻게 적용할 수 있는지 알아본다. 시스템 보안을 조사하고, 강건한 데이터 분석을 수행할 수 있는 최신 실용 기술을 배우며, 최신 사이버 공격의 추세에 효과적인 대책을 설계할 수 있는 새로운 접근 방식에 대한 통찰력도 얻을 수 있을 것이다. 또한 프라이버시 보호 메커니즘(privacy-preserving mechanism)과 분류기(classifier)에 대한 근사-최적 회피(near-optimal evasion)를 자세히 설명하고, 스팸 메일과 네트워크 보안에 관한 심층적인 인스턴스 연구 결과를 통해 전통적인 머신러닝 알고리즘을 성공적으로 공격하는 방법도 소개한다. 이 분야의 현재 기술 수준과 미래 방향의 개요를 빈틈없이 제공하는 이 획기적인 작업은 컴퓨터 보안과 머신러닝 분야의 연구자와 실무자, 학생, 사이버보안 군비 경쟁의 다음 단계를 배우려는 사람에게 꼭 필요한 책이다.
선정 및 수상내역
2021년 대한민국학술원 우수학술도서 선정도서

작가정보

저자(글) 앤서니 조셉

Anthony D. Joseph
버클리 캘리포니아대학교의 전기공학 및 컴퓨터과학부의 특임 교수다. 인텔 버클리 연구소의 책임자를 역임했다.

저자(글) 블레인 넬슨

Blaine Nelson
구글의 오용-대응기술팀(CAT, Counter-Abuse Technology Team)의 소프트웨어 기술자다. 그 전에는 포츠담대학교와 튀빙겐대학교에서 일했다.

Benjamin I. P. Rubinstein
멜버른대학교의 컴퓨팅 및 정보 시스템 부교수다. 이전에 마이크로소프트 연구소와 구글 연구소, 야후 연구소, 인텔 버클리 연구소 및 IBM 연구소에서 일했다.

저자(글) J. D. 타이가

J. D. Tygar
버클리 캘리포니아대학교의 교수이며, 컴퓨터 보안 분야에서 널리 일하고 있다. 버클리에서 전기공학 및 컴퓨터과학부와 정보 대학에서 근무하고 있다.

번역 김우석

여러 개발 프로젝트를 수행하며 기초 학문을 위해 광운대학교에서 공학 석사를 취득했고. 정보보안을 체계적으로 배우기 위해 고려대학교 정보보호대학원 박사 과정을 수료했다. 경찰청 사이버테러대응센터에서 사이버 수사를 지원하는 인터넷 추적 시스템을 개발, 현재 한전KDN에서 정부기관 사이버안전센터에서의 CERT 및 보안관제 업무를 수행하고 있다. 머신러닝 기술을 활용해 해킹에 대응하는 기술을 연구하고, 산업보안에 머신러닝 기술을 적용하기 위한 설계 및 데이터 분석을 진행하고 있다.

번역 장기식

경찰청 사이버안전국 디지털포렌식센터에서 디지털포렌식 업무를 담당했다. 경찰대학 치안정책연구소에서 데이터 분석을 접한 이후 데이터 분석을 기반으로 한 머신 러닝 기술을 연구했으며, 이 경험을 바탕으로 현재 유펜솔루션 기업부설연구소 연구소장으로, 웹 크롤링 서비스 스파이더킴에 데이터 분석과 머신러닝을 적용하는 연구를 책임지고 있다. 번역서로는 『보안을 위한 효율적인 방법 PKI』(인포북, 2003)와 『EnCase 컴퓨터 포렌식』(에이콘, 2015), 『인텔리전스 기반 사고 대응』(에이콘, 2019)이 있다.

고려대학교에서 대수학/암호학으로 박사학위를 받았다. (주)텔리맨에서 제한수신시스템(CAS)과 스마트카드 COS 개발 업무를 담당했고, 시큐아이에서 PKI 개발 업무를 담당했다. 이후, 삼성전자 종합기술원에서 DRM, Watermarking, 미래인터넷 보안 연구를 수행했으며, 현재 수원대학교 ICT융합대학정보보호학과에 재직 중이다. CISA와 CISM 자격을 보유하고 있다

ROTC 27기 정보병과 장교로 정보참모 등 주요 직책을 역임한 뒤 정보본부에서 장관 일일정보담당 등을 수행 후 전역했다. 2012년 11월 국방부 군무원으로 임용돼 합참 작전본부 작전보안담당, 국방부 정보본부에서 암호연구개발을 했으며 현재 국방정보본부 암호정책담당을 맡고 있다. 정보 관련한 다수의 글과 논문을 『합참지』, 『국방일보』, 『군사평론』, 『국방정책연구』, 『한국정보보호학회지』에 발표했으며, 연세대학교에서 한국의 테러리즘 대응 방안에 대한 연구로 정치학석사 학위를, 고려대학교에서 국방 사이버 안보 역량 강화 방안으로 공학박사 학위를 취득했다. 저서로는 『합동 작전 보안 지침서』(2014), 『국방암호체계 중장기 연구개발 계획』(2020), 『사이버 공격 막느냐! 뚫리느냐!』(상상미디어, 2020)가 있고, 미 교범인 『합동/국가 정보지원』(2014) 번역서를 감수했다.

고려대학교 정보보호대학원 정보보호학부 사이버국방학과 교수다. 고려대학교 정보전산처장을 지내기도 했다. 삼성그룹과 네이버에서 일한 뒤 고려대학교에서 위험 관리를 강의하고 있다. 기술과 법을 아우르는 관점에서 사이버 공간의 리스크를 관리해낼 수 있는 사회적 기반에 대한 원리와 체계 수립에 관심을 가지고 연구와 교육에 매진하고 있다. 최근에는 인공지능을 이용한 사기, 돈세탁 등의 사이버범죄 탐지와 사이버전(cyber戰)에서의 지능형 지휘 체계의 설계 분야로 영역을 확대하고 있다.

목차

  • 1부. 적대적 머신러닝의 개요

    1장. 소개
    1.1 동기
    1.2 원칙에 입각한 시큐어 학습
    1.3 시큐어 학습과 관련된 연구 동향
    1.4 개요


    2장. 배경 및 표기법
    2.1 기본 표기법
    2.2 통계적 머신러닝
    2.2.1 데이터
    2.2.2 가설공간
    2.2.3 학습 모델
    2.2.4 지도 학습
    2.2.5 다른 학습 패러다임


    3장. 시큐어 학습을 위한 프레임워크
    3.1 학습 단계 분석
    3.2 보안 분석
    3.2.1 보안 목표
    3.2.2 위협 모델
    3.2.3 보안에서 머신러닝 응용프로그램에 관한 설명
    3.3 프레임워크
    3.3.1 분류 체계
    3.3.2 적대적 학습 게임
    3.3.3 적대적 능력의 특징
    3.3.4 공격
    3.3.5 방어
    3.4 탐색적 공격
    3.4.1 탐색적 게임
    3.4.2 탐색적 무결성 공격
    3.4.3 탐색적 가용성 공격
    3.4.4 탐색적 공격에 대한 방어
    3.5 인과적 공격
    3.5.1 인과적 게임
    3.5.2 인과적 무결성 공격
    3.5.3 인과적 가용성 공격
    3.5.4 인과적 공격에 대한 방어
    3.6 반복 학습 게임
    3.6.1 보안에서의 반복 학습 게임
    3.7 프라이버시 보호 학습
    3.7.1 차등 프라이버시
    3.7.2 탐색적, 인과적 프라이버시 공격
    3.7.3 임의성을 무시한 유용성


    2부. 머신러닝에 관한 인과적 공격

    4장. 초구 학습기를 대상으로 하는 공격
    4.1 초구 탐지기에 대한 인과적 공격
    4.1.1 학습 가정
    4.1.2 공격 가정
    4.1.3 해석적 방법론
    4.2 초구 공격 설명
    4.2.1 중심 이동
    4.2.2 공격의 형식적 표현
    4.2.3 공격 수열의 특징
    4.3 최적 무제한 공격
    4.3.1 최적 무제한 공격: 블록 쌓기
    4.4 공격에 시간 제약 조건 추가
    4.4.1 가변 질량의 블록 쌓기
    4.4.2 대안 공식
    4.4.3 최적 완화 해
    4.5 데이터 치환 재교육을 대상으로 하는 공격
    4.5.1 평균제거 치환과 임의제거 치환 정책
    4.5.2 최근접제거 치환 정책
    4.6 제한된 공격자
    4.6.1 탐욕 최적 공격
    4.6.2 혼합 데이터 공격
    4.6.3 확장
    4.7 요약


    5장. 가용성 공격 사례 연구: 스팸베이즈
    5.1 스팸베이즈 스팸 필터
    5.1.1 스팸베이즈 훈련 알고리즘
    5.1.2 스팸베이즈 예측
    5.1.3 스팸베이즈 모델
    5.2 스팸베이즈의 위협 모델
    5.2.1 공격자의 목표
    5.2.2 공격자의 지식
    5.2.3 훈련 모델
    5.2.4 오염 가정
    5.3 스팸베이즈 학습기에 대한 인과적 공격
    5.3.1 인과적 가용성 공격
    5.3.2 인과적 무결성 공격-유사 스팸
    5.4 부정적인 영향 거부(RONI) 방어
    5.5 스팸베이즈 실험
    5.5.1 실험 방법
    5.5.2 사전 공격 결과
    5.5.3 집중 공격 결과
    5.5.4 유사 스팸 공격 실험
    5.5.5 부정적인 영향 거부 결과
    5.6 요약


    6장. 무결성 공격 사례 연구: PCA 탐지기
    6.1 이상 트래픽 탐지를 위한 PCA 방법
    6.1.1 트래픽 행렬과 용량 이상
    6.1.2 이상 탐지를 위한 부분공간 방법
    6.2 PCA 부분공간의 오염
    6.2.1 위협 모델
    6.2.2 정보 없이 쭉정이 선택
    6.2.3 국소 정보 쭉정이 선택
    6.2.4 전역 정보 쭉정이 선택
    6.2.5 개구리 삶기 공격
    6.3 오염에 복원력이 있는 탐지기
    6.3.1 직감
    6.3.2 PCA-격자
    6.3.3 강건한 라플라스 한계점
    6.4 경험적 평가
    6.4.1 설정
    6.4.2 취약한 흐름 식별
    6.4.3 공격 평가
    6.4.4 해독제 평가
    6.4.5 개구리 삶기 중독 공격의 경험적 평가
    6.5 요약


    3부. 머신러닝에 대한 탐색적 공격

    7장. SVM 학습의 프라이버시 보호 메커니즘
    7.1 프라이버시 침해 사례 연구
    7.1.1 매사추세츠주 공무원 건강 기록
    7.1.2 AOL 검색 질의 로그
    7.1.3 넷플릭스 영화 평가 데이터 예측 대회
    7.1.4 가명 기반의 트위터의 탈익명화
    7.1.5 전장유전체연관분석
    7.1.6 마이크로타기팅 광고
    7.1.7 교훈
    7.2 문제 설정: 프라이버시 보호 학습
    7.2.1 차등 프라이버시
    7.2.2 유용성
    7.2.3 차등 프라이버시의 역사적 연구 방향
    7.3 SVM: 간략한 소개
    7.3.1 평행변환 -불변 커널
    7.3.2 알고리즘 안전성
    7.4 출력 섭동에 의한 차등 프라이버시
    7.5 목표 섭동에 의한 차등 프라이버시
    7.6 유한차원 특성공간
    7.7 최적 차등 프라이버시에 대한 경계
    7.7.1 상계
    7.7.2 하계
    7.8 요약


    8장. 분류기의 근사-최적 회피
    8.1 근사 -최적 회피 특징
    8.1.1 적대적 비용
    8.1.2 근사 -최적 회피
    8.1.3 탐색 용어
    8.1.4 승법 최적성 대 가법 최적성
    8.1.5 볼록 -유도 분류기 모임
    8.2 비용에 대한 볼록 클래스의 회피
    8.3 일반 lp 비용에 대한 회피
    8.3.1 볼록 양의 집합
    8.3.2 볼록 음의 집합
    8.4 요약
    8.4.1 근사 -최적 회피에 관한 미해결 문제
    8.4.2 대안 회피 기준
    8.4.3 실제 회피


    4부 적대적 머신러닝의 연구 방향
    9장. 적대적 머신러닝의 도전 과제
    9.1 토론과 미해결 문제
    9.1.1 적대적 게임의 미개척 구성 요소
    9.1.2 방어 기술 개발
    9.2 미해결 문제 검토
    9.3 끝맺는 말


    부록

    부록 A. 학습과 초기하학의 배경
    A.1 일반적인 배경 주제 개요
    A.2 초구 덮개
    A.3 초입방체 덮개

    부록 B. 초구 공격에 대한 전체 증명
    B.1 정리 4.7의 증명
    B.2 정리 4.14의 증명
    B.3 정리 4.15의 증명
    B.4 정리 4.16의 증명
    B.5 정리 4.18의 증명

    부록 C. 스팸베이즈 분석
    C.1 스팸베이즈의 I(ㆍ) 메시지 점수
    C.2 스팸베이즈에 대한 최적 공격 구성

    부록 D. 근사-최적 회피에 대한 전체 증명

추천사

  • “데이터 과학 실무자는 공격자가 얼마나 쉽게 적응형 머신러닝 시스템(adaptive machine learning system)을 조작하고 오용하는지 잘 알지 못한다. 이 책은 공격을 분류하고 적대적 학습 연구 결과로 이 문제의 심각성을 보여준다. 또한 이 책은 오래된 공격뿐만 아니라 최신 딥러닝 시스템(deep learning system)의 약점도 분석한다. 여러 학습 시스템과 공격 유형에 관한 다양한 방어법은 공격에 더 강건한 시스템을 설계하는 연구자와 개발자에게 도움이 될 것이다.”

  • “시의적절한 이 책은 권위 있으면서도 포괄적인 주제를 다루는 올바른 책이다. 머신러닝이 보편화되고 있다. 그러나 사람들이 머신러닝을 신뢰하려면 먼저 머신러닝을 얼마나 신뢰할 수 있는지 알아야 한다.”

책 속으로

★ 옮긴이의 말 ★

알파고 이후로 한국에도 머신러닝의 시대가 본격적으로 시작돼 여러 분야에서 머신러닝이 사용되고 있다. 특히 보안 분야에서 머신러닝을 사용한 솔루션이 활발하게 개발되고 국가적으로 활용되고 있다. 이 책은 보안 분야에 중점을 두고 있어 현업 보안 담당자와 보안 관련 머신러닝 종사자들에 적합한 책이며 예측하지 못한 적대적인 상황에 대해 기술적 개요를 제공하고 공격의 일반적인 방법을 제시한다. 보안 분야에 관심이 있는 머신러닝 종사자와 현업 개발자들에게 도움이 되리라 확신한다.
김우석

머신러닝을 처음 접했을 때, 머신러닝은 우리에게 도움이 되는 일을 하는 알고리즘이라고 생각했다. 그러나 이 책을 접하고 나서는 생각이 바뀌었다. 우리에게 이로운 일을 하는 머신러닝 알고리즘이 제대로 작동하지 못하도록 다른 머신러닝 알고리즘을 이용해 공격하는 일이 영화가 아닌 현실에서 일어나고 있다. 우리가 알지 못하는 사이에 머신러닝 알고리즘 간에 공격과 방어라는 총성 없는 전쟁이 진행 중이다. 보안에 종사하고 있거나 관심이 있는 사람들은 공격자에게 뒤처지지 않도록 최신 트렌드의 공격 기법과 그에 대응하는 방어 기법에 익숙해져야 할 것이다. 이 책은 이런 사람들에게 도움이 되리라 확신한다.
장기식

처음 한 걸음. 인생에서 방향을 정하고 한 걸음을 내딛는 것은 항상 설렘이 있다. 연구 주제를 정하고 많은 논문을 검토하고, 새로운 아이디어를 도출해서 실험하고, 논문을 작성해서 발표하는 것처럼 오랜 시간을 준비하는 일을 수십 년 동안 해오면서 마음 한편에 책을 번역하거나 직접 써 보고 싶다는 생각은 항상 있었다.
미래 인터넷 연구를 진행하면서 머신러닝과 미래 인터넷 기술을 접목하는 방법을 고민하던 중이라 방대한 연구 결과를 리뷰하고 정리한 이 책은 개인적인 연구에도 많은 도움이 된다. 데이터 분석에 의존해 상황을 학습하고 판단하고 결정하는 머신러닝의 기본적인 절차에 있어서 학습과 시험에 사용되는 데이터의 무결성과 정확성은 머신러닝의 성능을 좌우하는 가장 중요한 요소일 것이다. 그러므로 머신러닝 시스템을 공격 대상으로 한 공격자에게 이 학습 데이터는 가장 흥미로운 재료일 수밖에 없다. 이 책은 이와 같은 학습 데이터의 신뢰를 떨어뜨릴 수 있는 다양한 공격 가능성에 대해 그동안 연구된 방대한 분량의 연구 결과를 자세히 설명한다. 머신러닝을 연구하는 사람에겐 연구의 새로운 방향을 찾는 데 도움이 될 것이며, 실제 서비스에 머신러닝을 적용하는 개발자에게는 어려운 수식을 전부 이해하지 않더라도 공격 기법을 이해하고 이에 대한 대응책 마련에 활용할 수 있을 것으로 기대된다.
김대엽

기본정보

상품정보
ISBN 9791161754208 ( 1161754202 )
쪽수 500쪽
크기
188 * 235 * 36 mm / 1178 g
총권수 1권
시리즈명
데이터 과학
원서명/저자명 Adversarial Machine Learning/Anthony Joseph, Blaine Nelson & 2 more

Klover

Klover 리뷰 안내
교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
리워드 안내
구매 후 90일 이내에 평점과 10자 이상의 리뷰 작성 시 e교환권 200원을 적립해 드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다.
리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 리뷰 종류별로 구매한 아이디당 한 상품에 최초 1회 작성 건들에 대해서만 제공됩니다.
한달 후 리뷰
구매 후 30일~ 120일 이내에 작성된 두 번째 구매리뷰에 대해 한 달 후 리뷰로 인지하고 e교환권 100원을 추가 제공합니다.
운영 원칙 안내
Klover 리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다.
일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰
신고하기
다른 고객이 작성리뷰에 대해 불쾌함을 느끼는 경우 신고를 할 수 있으며, 신고 자가 일정수준 이상 누적되면 작성하신 리뷰가 노출되지 않을 수 있습니다.

구매 후 리뷰 작성 시, e교환권 200원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요

교환/반품/품절 안내

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
TOP

저자 모두보기

매장별 재고 및 위치

할인쿠폰 다운로드

  • 쿠폰은 주문결제화면에서 사용 가능합니다.
  • 다운로드한 쿠폰은 마이 > 혜택/포인트 에서 확인 가능합니다.
  • 도서정가제 적용 대상 상품에 대해서는 정가의 10%까지 쿠폰 할인이 가능합니다.
  • 도서정가제 적용 대상 상품에 10% 할인이 되었다면, 해당 상품에는 사용하실 수
    없습니다.

적립예정포인트 안내

  • 통합포인트 안내

    • 통합포인트는 교보문고(인터넷, 매장), 핫트랙스(인터넷, 매장), 모바일 교보문고 등 다양한 곳에서 사용하실 수 있습니다.
    • 상품 주문 시, 해당 상품의 적립률에 따라 적립 예정 포인트가 자동 합산되고 주문하신 상품이 발송완료 된 후에 자동으로 적립됩니다.
    • 단, 쿠폰 및 마일리지, 통합포인트, e교환권 사용 시 적립 예정 통합포인트가 변동될 수 있으며 주문취소나 반품시에는 적립된 통합포인트가 다시 차감됩니다.
  • 통합포인트 적립 안내

    • 통합포인트는 도서정가제 범위 내에서 적용됩니다.
    • 추가적립 및 회원 혜택은 도서정가제 대상상품(국내도서, eBook등)으로만 주문시는 해당되지 않습니다.
  • 기본적립) 상품별 적립금액

    • 온라인교보문고에서 상품 구매시 상품의 적립률에 따라 적립됩니다.
    • 단 도서정가제 적용 대상인 국내도서,eBook은 15%내에서 할인율을 제외한 금액내로 적립됩니다.
  • 추가적립) 5만원 이상 구매시 통합포인트 2천원 추가적립

    • 5만원 이상 구매시 통합포인트 2천원 적립됩니다.
    • 도서정가제 예외상품(외서,음반,DVD,잡지(일부),기프트) 2천원 이상 포함시 적립 가능합니다.
    • 주문하신 상품이 전체 품절인 경우 적립되지 않습니다.
  • 회원혜택) 3만원이상 구매시 회원등급별 2~4% 추가적립

    • 회원등급이 플래티넘, 골드, 실버 등급의 경우 추가적립 됩니다.
    • 추가적립은 실결제액 기준(쿠폰 및 마일리지, 통합포인트, e교환권 사용액 제외) 3만원 이상일 경우 적립됩니다.
    • 주문 후 취소,반품분의 통합포인트는 단품별로 회수되며, 반품으로 인해 결제잔액이 3만원 미만으로 변경될 경우 추가 통합포인트는 전액 회수될 수 있습니다.

제휴 포인트 안내

제휴 포인트 사용

  • OK CASHBAG 10원 단위사용 (사용금액 제한없음)
  • GS&POINT 최대 10만 원 사용
더보기

구매방법 별 배송안내

배송 일정 안내

  • 출고 예정일은 주문상품의 결제(입금)가 확인되는 날 기준으로 상품을 준비하여 상품 포장 후 교보문고 물류센터에서 택배사로 전달하게 되는 예상 일자입니다.
  • 도착 예정일은 출고 예정일에서 택배사의 배송일 (약1~2일)이 더해진 날이며 연휴 및 토, 일, 공휴일을 제외한 근무일 기준입니다.
배송 일정 안내
출고예정일 도착예정일
1일이내 상품주문 후 2~3일 이내
2일이내 상품주문 후 3~4일 이내
3일이내 상품주문 후 4~5일 이내
4일이내 상품주문 후 5~6일 이내

연휴 및 토, 일, 공휴일은 제외됩니다.

당일배송 유의사항

  • 수도권 외 지역에서 선물포장하기 또는 사은품을 포함하여 주문할 경우 당일배송 불가
  • 회사에서 수령할 경우 당일배송 불가 (퇴근시간 이후 도착 또는 익일 배송 될 수 있음)
  • 무통장입금 주문 후 당일 배송 가능 시간 이후 입금된 경우 당일 배송 불가
  • 주문 후 배송지 변경 시 변경된 배송지에 따라 익일 배송될 수 있습니다.
  • 수도권 외 지역의 경우 효율적인 배송을 위해 각 지역 매장에서 택배를 발송하므로, 주문 시의 부록과 상이할 수 있습니다.
  • 각 지역 매장에서 재고 부족 시 재고 확보를 위해 당일 배송이 불가할 수 있습니다.

일반배송 시 유의사항

  • 날씨나 택배사의 사정에 따라 배송이 지연될 수 있습니다.
  • 수도권 외 지역 바로배송 서비스의 경우 경품 수령 선택 여부에 따라 도착 예정일이 변경됩니다.
  • 출고 예정일이 5일 이상인 상품의 경우(결제일로부터 7일 동안 미입고), 출판사 / 유통사 사정으로 품/절판 되어 구입이 어려울 수 있습니다. 이 경우 SMS, 메일로 알려드립니다.
  • 선물포장 주문 시 합배송 처리되며, 일부상품 품절 시 도착 예정일이 늦어질 수 있습니다.
  • 분철상품 주문 시 분철 작업으로 인해 기존 도착 예정일에 2일 정도 추가되며, 당일 배송, 해외 배송이 불가합니다.

해외주문 시 유의사항

  • 해외주문도서는 해외 거래처 사정에 의해 품절/지연될 수 있습니다.

Special order 주문 시 유의사항

  • 스페셜오더 도서나 일서 해외 주문 도서와 함께 주문 시 배송일이 이에 맞추어 지연되오니, 이점 유의해 주시기 바랍니다.

바로드림존에서 받기

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상 시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함 되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해 주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반 코너에서 수령확인이 가능합니다
  • 선물 받는 분의 휴대폰번호만 입력하신 후 결제하시면 받는 분 휴대폰으로 선물번호가 전달됩니다.
  • 문자를 받은 분께서는 마이 > 주문관리 > 모바일 선물내역 화면에서 선물번호와 배송지 정보를 입력하시면 선물주문이 완료되어 상품준비 및 배송이 진행됩니다.
  • 선물하기 결제하신 후 14일까지 받는 분이 선물번호를 등록하지 않으실 경우 주문은 자동취소 됩니다.
  • 또한 배송 전 상품이 품절 / 절판 될 경우 주문은 자동취소 됩니다.

바로드림 서비스 안내

  1. STEP 01
    매장 선택 후 바로드림 주문
  2. STEP 02
    준비완료 알림 시 매장 방문하기
  3. STEP 03
    바로드림존에서 주문상품 받기
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.
  1. STEP 01
    픽업박스에서 찾기 주문
  2. STEP 02
    도서준비완료 후 휴대폰으로 인증번호 전송
  3. STEP 03
    매장 방문하여 픽업박스에서 인증번호 입력 후 도서 픽업
  • 바로드림은 전국 교보문고 매장 및 교내서점에서 이용 가능합니다.
  • 잡지 및 일부 도서는 바로드림 이용이 불가합니다.
  • 각 매장 운영시간에 따라 바로드림 이용 시간이 달라질 수 있습니다.

수령 안내

  • 안내되는 재고수량은 서비스 운영 목적에 따라 상이할 수 있으므로 해당 매장에 문의해주시기 바랍니다.
  • 바로드림 주문 후 재고가 실시간 변동되어, 수령 예상시간에 수령이 어려울 수 있습니다.

취소/교환/반품 안내

  • 주문 후 7일간 찾아가지 않으시면, 자동으로 결제가 취소됩니다.
  • 취소된 금액은 결제수단의 승인취소 및 예치금으로 전환됩니다.
  • 교환/반품은 수령하신 매장에서만 가능합니다.

사은품 관련 안내

  • 바로드림 서비스는 일부 1+1 도서, 경품, 사은품 등이 포함되지 않습니다.

음반/DVD 바로드림시 유의사항

  • 음반/DVD 상품은 바로드림 주문 후 수령점 변경이 불가합니다. 주문 전 수령점을 꼭 확인해주세요.
  • 사은품(포스터,엽서 등)은 증정되지 않습니다.
  • 커버이미지 랜덤발매 음반은 버전 선택이 불가합니다.
  • 광화문점,강남점,대구점,영등포점,잠실점은 [직접 찾아 바로드림존 가기], [바로드림존에서 받기] 로 주문시 음반코너에서 수령확인이 가능합니다.

도서 소득공제 안내

  • 도서소득공제란?

    • 2018년 7월 1일 부터 근로소득자가 신용카드 등으로 도서구입 및 공연을 관람하기 위해 사용한 금액이 추가 공제됩니다. (추가 공제한도 100만원까지 인정)
      • 총 급여 7,000만 원 이하 근로소득자 중 신용카드, 직불카드 등 사용액이 총급여의 25%가 넘는 사람에게 적용
      • 현재 ‘신용카드 등 사용금액’의 소득 공제한도는 300만 원이고 신용카드사용액의 공제율은 15%이지만, 도서·공연 사용분은 추가로 100만 원의 소득 공제한도가 인정되고 공제율은 30%로 적용
      • 시행시기 이후 도서·공연 사용액에 대해서는 “2018년 귀속 근로소득 연말 정산”시기(19.1.15~)에 국세청 홈택스 연말정산간소화 서비스 제공
  • 도서 소득공제 대상

    • 도서(내서,외서,해외주문도서), eBook(구매)
    • 도서 소득공제 대상 상품에 수반되는 국내 배송비 (해외 배송비 제외)
      • 제외상품 : 잡지 등 정기 간행물, 음반, DVD, 기프트, eBook(대여,학술논문), 사은품, 선물포장, 책 그리고 꽃
      • 상품정보의 “소득공제” 표기를 참고하시기 바랍니다.
  • 도서 소득공제 가능 결제수단

    • 카드결제 : 신용카드(개인카드에 한함)
    • 현금결제 : 예치금, 교보e캐시(충전에한함), 해피머니상품권, 컬쳐캐쉬, 기프트 카드, 실시간계좌이체, 온라인입금
    • 간편결제 : 교보페이, 네이버페이, 삼성페이, 카카오페이, PAYCO, 토스, CHAI
      • 현금결제는 현금영수증을 개인소득공제용으로 신청 시에만 도서 소득공제 됩니다.
      • 교보e캐시 도서 소득공제 금액은 교보eBook > e캐시 > 충전/사용내역에서 확인 가능합니다.
      • SKpay, 휴대폰 결제, 교보캐시는 도서 소득공제 불가
  • 부분 취소 안내

    • 대상상품+제외상품을 주문하여 신용카드 "2회 결제하기"를 선택 한 경우, 부분취소/반품 시 예치금으로 환원됩니다.

      신용카드 결제 후 예치금으로 환원 된 경우 승인취소 되지 않습니다.

  • 도서 소득공제 불가 안내

    • 법인카드로 결제 한 경우
    • 현금영수증을 사업자증빙용으로 신청 한 경우
    • 분철신청시 발생되는 분철비용

알림 신청

아래의 알림 신청 시 원하시는 소식을 받아 보실 수 있습니다.
알림신청 취소는 마이룸 > 알림신청내역에서 가능합니다.

적대적 머신러닝
머신러닝 알고리즘으로 하는 시스템 보안 공격과 방어
한달 후 리뷰
/ 좋았어요
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 올해 주식 투자를 시작했다. 아무것도 모르고 초심자의 행운으로 분유값 정도를 벌고 나니, 조금 더 공부해보고 싶어져서 『초격차 투자법』을 구매했다.
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
기대가됩니다~
기대가됩니다~
기대가됩니다~
이 구매자의 첫 리뷰 보기
/ 좋았어요
하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까 예견해 본다. 책한권으로 등의 근육들이 오그라진 느낌에 아직도 느껴진다. 하루밤 사이 책한권을 읽은게 처음이듯 하다. 저녁나절 책을 집어든게 잘못이다. 마치 게임에 빠진 아이 처럼 잠을 잘수없게 만든다. 결말이 어쩌면 당연해보이는 듯 하여도 헤어나올수 없는 긴박함이 있다. 조만간 영화화되어지지 않을까..
작년까지만 해도 주식은 커녕 재테크에 관해 아무것도 모르다가 구매했어요! 저도 공부하고 싶어서 구매했어요~ 다같이 완독 도전해봐요! :)
기대가됩니다~
신고

신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.

허위 신고일 경우, 신고자의 서비스 활동이 제한될 수 있으니 유의하시어
신중하게 신고해주세요.

판형알림

  • A3 [297×420mm]
  • A4 [210×297mm]
  • A5 [148×210mm]
  • A6 [105×148mm]
  • B4 [257×364mm]
  • B5 [182×257mm]
  • B6 [128×182mm]
  • 8C [8절]
  • 기타 [가로×세로]